Role of etofenprox nanoformulation in suppression of the silver whitefly, Bemisia tabaci and its residue in eggplant fruits

IF 0.7 Q3 AGRONOMY
{"title":"Role of etofenprox nanoformulation in suppression of the silver whitefly, Bemisia tabaci and its residue in eggplant fruits","authors":"","doi":"10.24425/jppr.2023.144501","DOIUrl":null,"url":null,"abstract":"The normal formulation of etofenprox was developed to nanoformulation and used against the adults of silver whitefly, Bemisia tabaci in eggplant fields. Three concentrations of both the normal and nanoformulations were used. The concentrations of etofenprox nanoformulation were one-fifth of the normal formulation. The nanosize of etofenprox ranged from 225 to 489 nm. The loading capacity of etofenprox was 60.7 ± 5.7%. The obtained results showed that the LC 50 of the normal formulation was four times more than the nanoformulation. The LC 50 for the nanoformulation was 0.9 and 3.5 ppm for the normal formulation of etofenprox. This means that the nanoformulation of etofenprox was more effective than the normal. The residues of both nano and normal formulations were determined in eggplant fruits after three applications. The obtained results showed that the residue of nanoformulation after 1 hour of treatment was 0.51 ± 0.03 compared with 0.62 ± 0.03 mg · kg –1 ± SD in normal formulation. After 1 hour of treatment the residue of etofenprox was reduced to 0.11 ± 0.1 and 0.22 ± 0.02 mg · kg –1 ± SD in nano and normal formulations, respectively. The dissipation rates of both nano and normal formulations after 1 hour were 78.3 and 64.5%, respectively. The degradation rate ( K ) in nanoformulation and normal etofenprox was 1.33 and 0.73 mg · kg –1 ± SD, respectively. The residue half-life (LR 50 ) was 0.52 and 1 day, respectively. The preharvest interval (PHI) was 6 days for both nano and normal etofenprox formulations. The results confirmed that nanoetofenprox was more effective against B. tabaci adults, with lower persistence and lower residue than the normal formulation of etofenprox.","PeriodicalId":16848,"journal":{"name":"Journal of Plant Protection Research","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Protection Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/jppr.2023.144501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

The normal formulation of etofenprox was developed to nanoformulation and used against the adults of silver whitefly, Bemisia tabaci in eggplant fields. Three concentrations of both the normal and nanoformulations were used. The concentrations of etofenprox nanoformulation were one-fifth of the normal formulation. The nanosize of etofenprox ranged from 225 to 489 nm. The loading capacity of etofenprox was 60.7 ± 5.7%. The obtained results showed that the LC 50 of the normal formulation was four times more than the nanoformulation. The LC 50 for the nanoformulation was 0.9 and 3.5 ppm for the normal formulation of etofenprox. This means that the nanoformulation of etofenprox was more effective than the normal. The residues of both nano and normal formulations were determined in eggplant fruits after three applications. The obtained results showed that the residue of nanoformulation after 1 hour of treatment was 0.51 ± 0.03 compared with 0.62 ± 0.03 mg · kg –1 ± SD in normal formulation. After 1 hour of treatment the residue of etofenprox was reduced to 0.11 ± 0.1 and 0.22 ± 0.02 mg · kg –1 ± SD in nano and normal formulations, respectively. The dissipation rates of both nano and normal formulations after 1 hour were 78.3 and 64.5%, respectively. The degradation rate ( K ) in nanoformulation and normal etofenprox was 1.33 and 0.73 mg · kg –1 ± SD, respectively. The residue half-life (LR 50 ) was 0.52 and 1 day, respectively. The preharvest interval (PHI) was 6 days for both nano and normal etofenprox formulations. The results confirmed that nanoetofenprox was more effective against B. tabaci adults, with lower persistence and lower residue than the normal formulation of etofenprox.
依托芬prox纳米制剂对茄子果实中银粉虱、烟粉虱及其残留的抑制作用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Plant Protection Research
Journal of Plant Protection Research Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
2.10
自引率
9.10%
发文量
0
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信