Connected Outer-Hop Independent Dominating Sets in Graphs Under Some Binary Operations

IF 1 Q1 MATHEMATICS
Jahiri Manditong, Javier Hassan, Ladznar S. Laja, Amy A. Laja, N. H. M. Mohammad, Sisteta U. Kamdon
{"title":"Connected Outer-Hop Independent Dominating Sets in Graphs Under Some Binary Operations","authors":"Jahiri Manditong, Javier Hassan, Ladznar S. Laja, Amy A. Laja, N. H. M. Mohammad, Sisteta U. Kamdon","doi":"10.29020/nybg.ejpam.v16i3.4766","DOIUrl":null,"url":null,"abstract":"Let $G$ be a connected graph. A set $D\\subseteq V(G)$ is called a connected outer-hop independent dominating if $D$ is a connected dominating set and $V(G)\\s D$ is a hop independent set in $G$, respectively. The minimum cardinality of a connected outer-hop independent dominating set in $G$, denoted by $\\gamma_{c}^{ohi}(G)$, is called the connected outer-hop independent domination number of $G$. In this paper, we introduce and investigated the concept of connected outer-hop independent domination in a graph. We show that the connected outer-hop independent domination number and connected outer-independent domination number of a graph are incomparable. In fact, we find that their absolute difference can be made arbitrarily large. In addition, we characterize connected outer-hop independent dominating sets in graphs under some binary operations. Furthermore, these results are used to give exact values or bounds of the parameter for these graphs.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i3.4766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Let $G$ be a connected graph. A set $D\subseteq V(G)$ is called a connected outer-hop independent dominating if $D$ is a connected dominating set and $V(G)\s D$ is a hop independent set in $G$, respectively. The minimum cardinality of a connected outer-hop independent dominating set in $G$, denoted by $\gamma_{c}^{ohi}(G)$, is called the connected outer-hop independent domination number of $G$. In this paper, we introduce and investigated the concept of connected outer-hop independent domination in a graph. We show that the connected outer-hop independent domination number and connected outer-independent domination number of a graph are incomparable. In fact, we find that their absolute difference can be made arbitrarily large. In addition, we characterize connected outer-hop independent dominating sets in graphs under some binary operations. Furthermore, these results are used to give exact values or bounds of the parameter for these graphs.
某些二元运算下图的连通外跳独立支配集
设$G$为连通图。如果$D$是连通控制集,$V(G) $ s $D$分别是$G$中的跳独立集,则集$D$称为连通外跳独立控制集。$G$中连通外跳独立支配集的最小基数,用$\gamma_{c}^{ohi}(G)$表示,称为$G$的连通外跳独立支配数。本文引入并研究了图中连通外跳独立支配的概念。证明了图的连通外跳独立支配数和连通外跳独立支配数是不可比较的。事实上,我们发现它们的绝对差可以任意大。此外,我们还刻画了图在某些二元操作下的连通外跳独立支配集。此外,这些结果用于给出这些图的参数的精确值或边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信