Existence of hypersurfaces with prescribed mean curvature I – generic min-max

IF 1.8 2区 数学 Q1 MATHEMATICS
Xin Zhou, Jonathan J. Zhu
{"title":"Existence of hypersurfaces with prescribed mean curvature I – generic min-max","authors":"Xin Zhou, Jonathan J. Zhu","doi":"10.4310/cjm.2020.v8.n2.a2","DOIUrl":null,"url":null,"abstract":"We prove that, for a generic set of smooth prescription functions $h$ on a closed ambient manifold, there always exists a nontrivial, smooth, closed hypersurface of prescribed mean curvature $h$. The solution is either an embedded minimal hypersurface with integer multiplicity, or a non-minimal almost embedded hypersurface of multiplicity one. \nMore precisely, we show that our previous min-max theory, developed for constant mean curvature hypersurfaces, can be extended to construct min-max prescribed mean curvature hypersurfaces for certain classes of prescription function, including smooth Morse functions and nonzero analytic functions. In particular we do not need to assume that $h$ has a sign.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2018-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2020.v8.n2.a2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 59

Abstract

We prove that, for a generic set of smooth prescription functions $h$ on a closed ambient manifold, there always exists a nontrivial, smooth, closed hypersurface of prescribed mean curvature $h$. The solution is either an embedded minimal hypersurface with integer multiplicity, or a non-minimal almost embedded hypersurface of multiplicity one. More precisely, we show that our previous min-max theory, developed for constant mean curvature hypersurfaces, can be extended to construct min-max prescribed mean curvature hypersurfaces for certain classes of prescription function, including smooth Morse functions and nonzero analytic functions. In particular we do not need to assume that $h$ has a sign.
具有规定平均曲率I的超曲面的存在性-一般最小最大值
我们证明了,对于闭环境流形上的一组光滑规定函数$h$,总是存在一个具有规定平均曲率$h$的非平凡、光滑、闭超曲面。该解要么是整数重数的嵌入极小超曲面,要么是重数为1的非极小几乎嵌入超曲面。更准确地说,我们证明了我们以前为常平均曲率超曲面发展的最小-最大理论,可以扩展到为某些类别的规定函数(包括光滑Morse函数和非零解析函数)构造最小-最大规定平均曲率超表面。特别地,我们不需要假设$h$有一个符号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信