{"title":"Multiple Borel–Cantelli Lemma in dynamics and MultiLog Law for recurrence","authors":"D. Dolgopyat, B. Fayad, Sixu Liu","doi":"10.3934/jmd.2022009","DOIUrl":null,"url":null,"abstract":"A classical Borel–Cantelli Lemma gives conditions for deciding whether an infinite number of rare events will happen almost surely. In this article, we propose an extension of Borel–Cantelli Lemma to characterize the multiple occurrence of events on the same time scale. Our results imply multiple Logarithm Laws for recurrence and hitting times, as well as Poisson Limit Laws for systems which are exponentially mixing of all orders. The applications include geodesic flows on compact negatively curved manifolds, geodesic excursions on finite volume hyperbolic manifolds, Diophantine approximations and extreme value theory for dynamical systems.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2022009","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9
Abstract
A classical Borel–Cantelli Lemma gives conditions for deciding whether an infinite number of rare events will happen almost surely. In this article, we propose an extension of Borel–Cantelli Lemma to characterize the multiple occurrence of events on the same time scale. Our results imply multiple Logarithm Laws for recurrence and hitting times, as well as Poisson Limit Laws for systems which are exponentially mixing of all orders. The applications include geodesic flows on compact negatively curved manifolds, geodesic excursions on finite volume hyperbolic manifolds, Diophantine approximations and extreme value theory for dynamical systems.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.