{"title":"Hyper-Gaussian regularized Whittaker–Kotel’nikov–Shannon sampling series","authors":"Liangzhi Chen, Yang Wang, Haizhang Zhang","doi":"10.1142/s0219530521500342","DOIUrl":null,"url":null,"abstract":"The reconstruction of a bandlimited function from its finite sample data is fundamental in signal analysis. It is well known that oversampling of a bandlimited function leads to exponential convergence in its reconstruction. A simple and efficient Gaussian regularized Shannon sampling formula has been proposed in G. W. Wei [Quasi wavelets and quasi interpolating wavelets, Chem. Phys. Lett. 296 (1998) 215–222] with such an exponential convergence ability. We show that all hyper-Gaussian regularized formulas share this desired property. The analysis is built on estimates on the Fourier transform of the hyper-Gaussian functions. We also establish error bounds for the reconstruction of derivatives of a univariate bandlimited function, and for multivariate bandlimited functions.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530521500342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
The reconstruction of a bandlimited function from its finite sample data is fundamental in signal analysis. It is well known that oversampling of a bandlimited function leads to exponential convergence in its reconstruction. A simple and efficient Gaussian regularized Shannon sampling formula has been proposed in G. W. Wei [Quasi wavelets and quasi interpolating wavelets, Chem. Phys. Lett. 296 (1998) 215–222] with such an exponential convergence ability. We show that all hyper-Gaussian regularized formulas share this desired property. The analysis is built on estimates on the Fourier transform of the hyper-Gaussian functions. We also establish error bounds for the reconstruction of derivatives of a univariate bandlimited function, and for multivariate bandlimited functions.