Atmospheric Dispersion Modeling Using a Stochastic Wind Model

Q4 Physics and Astronomy
R. Albani, L. Gomes, H. Migon, A. J. da Silva Neto
{"title":"Atmospheric Dispersion Modeling Using a Stochastic Wind Model","authors":"R. Albani, L. Gomes, H. Migon, A. J. da Silva Neto","doi":"10.4028/p-5PXIoW","DOIUrl":null,"url":null,"abstract":"In this work, we propose a stochastic wind field based on the Bayesian dynamic linear model to account for the wind flow field in the transient advection-diffusion partial differential equation (PDE). The resulting dispersion model accounts for the time variation in the wind field and meteorological variables, allowing the simulation of a transient regime. The main advantage of using such a wind field model over a Fourier series to fit wind time series is its potential to make predictions. In addition, a suitable methodology is necessary to solve the resulting dispersion model. In this work, we use a finite element formulation appropriate to solve transient advection-diffusion PDEs. We verify the accuracy of the proposed methodology by reproducing a case study considering a field tracer experiment. The model evaluation against experimental data shows the good performance of the proposed dispersion model.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":"427 1","pages":"3 - 11"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defect and Diffusion Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-5PXIoW","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose a stochastic wind field based on the Bayesian dynamic linear model to account for the wind flow field in the transient advection-diffusion partial differential equation (PDE). The resulting dispersion model accounts for the time variation in the wind field and meteorological variables, allowing the simulation of a transient regime. The main advantage of using such a wind field model over a Fourier series to fit wind time series is its potential to make predictions. In addition, a suitable methodology is necessary to solve the resulting dispersion model. In this work, we use a finite element formulation appropriate to solve transient advection-diffusion PDEs. We verify the accuracy of the proposed methodology by reproducing a case study considering a field tracer experiment. The model evaluation against experimental data shows the good performance of the proposed dispersion model.
使用随机风模型的大气弥散模型
在这项工作中,我们提出了一个基于贝叶斯动态线性模型的随机风场来解释瞬态平流-扩散偏微分方程(PDE)中的风场。由此产生的散射模型考虑了风场和气象变量的时间变化,从而可以模拟瞬态状态。与傅立叶级数相比,使用这种风场模型来拟合风时间序列的主要优点是它具有进行预测的潜力。此外,需要一种合适的方法来求解由此产生的色散模型。在这项工作中,我们使用了一个适用于求解瞬态平流-扩散偏微分方程的有限元公式。我们通过重现一个考虑现场示踪剂实验的案例研究来验证所提出方法的准确性。根据实验数据对模型进行的评估表明,所提出的色散模型具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Defect and Diffusion Forum
Defect and Diffusion Forum Physics and Astronomy-Radiation
CiteScore
1.20
自引率
0.00%
发文量
127
期刊介绍: Defect and Diffusion Forum (formerly Part A of ''''Diffusion and Defect Data'''') is designed for publication of up-to-date scientific research and applied aspects in the area of formation and dissemination of defects in solid materials, including the phenomena of diffusion. In addition to the traditional topic of mass diffusion, the journal is open to papers from the area of heat transfer in solids, liquids and gases, materials and substances. All papers are peer-reviewed and edited. Members of Editorial Boards and Associate Editors are invited to submit papers for publication in “Defect and Diffusion Forum” . Authors retain the right to publish an extended and significantly updated version in another periodical.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信