{"title":"Lattice expansion and phase stability in nanocrystalline titanium thin films","authors":"J. Chakraborty","doi":"10.1080/09500839.2021.1937367","DOIUrl":null,"url":null,"abstract":"ABSTRACT Crystallite-size-dependent lattice expansion of the hcp Ti phase has been observed by X-ray diffraction of polycrystalline Ti thin films. X-ray line profile analysis (XLPA) revealed a systematic reduction of crystallite size in the hcp Ti phase with decreasing film thickness. Increase of specific volume (i.e. volume/atom) of the hcp Ti phase with decreasing crystallite size has confirmed such lattice expansion. The observed lattice expansion has been simulated using an existing theoretical model after appropriately incorporating a crystallite-size-dependent width of the grain boundaries. It is further revealed that decreasing crystallite size and accompanying lattice expansion leads to lattice instability of the hcp Ti phase and eventually to a hcp-fcc phase transformation of elemental Ti in these thin films as reported earlier by the author.","PeriodicalId":19860,"journal":{"name":"Philosophical Magazine Letters","volume":"101 1","pages":"330 - 340"},"PeriodicalIF":1.2000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09500839.2021.1937367","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09500839.2021.1937367","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Crystallite-size-dependent lattice expansion of the hcp Ti phase has been observed by X-ray diffraction of polycrystalline Ti thin films. X-ray line profile analysis (XLPA) revealed a systematic reduction of crystallite size in the hcp Ti phase with decreasing film thickness. Increase of specific volume (i.e. volume/atom) of the hcp Ti phase with decreasing crystallite size has confirmed such lattice expansion. The observed lattice expansion has been simulated using an existing theoretical model after appropriately incorporating a crystallite-size-dependent width of the grain boundaries. It is further revealed that decreasing crystallite size and accompanying lattice expansion leads to lattice instability of the hcp Ti phase and eventually to a hcp-fcc phase transformation of elemental Ti in these thin films as reported earlier by the author.
期刊介绍:
Philosophical Magazine Letters is the rapid communications part of the highly respected Philosophical Magazine, which was first published in 1798. Its Editors consider for publication short and timely contributions in the field of condensed matter describing original results, theories and concepts relating to the structure and properties of crystalline materials, ceramics, polymers, glasses, amorphous films, composites and soft matter. Articles emphasizing experimental, theoretical and modelling studies on solids, especially those that interpret behaviour on a microscopic, atomic or electronic scale, are particularly appropriate.
Manuscripts are considered on the strict condition that they have been submitted only to Philosophical Magazine Letters , that they have not been published already, and that they are not under consideration for publication elsewhere.