Data-Driven Decision Making in Precision Agriculture: The Rise of Big Data in Agricultural Systems

IF 0.5 Q4 AGRONOMY
Nicoleta Tantalaki, S. Souravlas, M. Roumeliotis
{"title":"Data-Driven Decision Making in Precision Agriculture: The Rise of Big Data in Agricultural Systems","authors":"Nicoleta Tantalaki, S. Souravlas, M. Roumeliotis","doi":"10.1080/10496505.2019.1638264","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we provide a review of the research dedicated to applications of data science techniques, and especially machine learning techniques, in relevant agricultural systems. Big data technologies create new opportunities for data intensive decision-making. We review works in agriculture that employ the practice of big data analysis to solve various problems, which reveal opportunities and promising areas of use. The high volume and complexity of the data produced pose challenges in successfully implementing precision agriculture. Machine learning seems promising to cope with agricultural big data, but needs to reinvent itself to meet existing challenges.","PeriodicalId":43986,"journal":{"name":"Journal of Agricultural & Food Information","volume":"20 1","pages":"344 - 380"},"PeriodicalIF":0.5000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10496505.2019.1638264","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural & Food Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10496505.2019.1638264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 86

Abstract

Abstract In this paper, we provide a review of the research dedicated to applications of data science techniques, and especially machine learning techniques, in relevant agricultural systems. Big data technologies create new opportunities for data intensive decision-making. We review works in agriculture that employ the practice of big data analysis to solve various problems, which reveal opportunities and promising areas of use. The high volume and complexity of the data produced pose challenges in successfully implementing precision agriculture. Machine learning seems promising to cope with agricultural big data, but needs to reinvent itself to meet existing challenges.
精准农业中的数据驱动决策:农业系统中大数据的兴起
在本文中,我们提供了一个研究综述,致力于数据科学技术的应用,特别是机器学习技术,在相关农业系统。大数据技术为数据密集型决策创造了新的机会。我们回顾了在农业中使用大数据分析实践来解决各种问题的工作,这些工作揭示了机会和有前景的使用领域。所产生的大量和复杂的数据对成功实施精准农业提出了挑战。机器学习似乎有望应对农业大数据,但需要重塑自我以应对现有挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信