Chang Lv, Jinyi Wang, Qirong Tian, Zhicheng Zhang, Tao Wang, Rongfei Liu, Sheng Wang
{"title":"Construction of mechanically robust superamphiphobic surfaces on fiber using large particles","authors":"Chang Lv, Jinyi Wang, Qirong Tian, Zhicheng Zhang, Tao Wang, Rongfei Liu, Sheng Wang","doi":"10.1007/s11706-022-0618-4","DOIUrl":null,"url":null,"abstract":"<div><p>Superamphiphobic surfaces have attracted the attention of researchers because of their broad application prospects. Currently, superamphiphobicity is primarily achieved by minimizing the solid-liquid contact area. Over the past few decades, researchers have primarily focused on using physical deposition methods to construct superamphiphobic surfaces using fine-sized nanoparticles (< 100 nm). However, porous hollow SiO<sub>2</sub> particles (PH-SiO<sub>2</sub>), which are typically large spheres, have a highly hierarchical structure and can provide lower solid-liquid contact fractions than those provided by fine-sized particles. In this study, we used PH-SiO<sub>2</sub> as building blocks and combined them with poly (dimethylsiloxane) to construct a mechanically robust coating on fiber by spray-coating. After chemical vapor deposition treatment, the coating exhibited excellent superamphiphobicity and could repel various liquids, covering a wide range of surface tensions (27.4–72.0 mN·m<sup>−1</sup>).</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"16 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-022-0618-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Superamphiphobic surfaces have attracted the attention of researchers because of their broad application prospects. Currently, superamphiphobicity is primarily achieved by minimizing the solid-liquid contact area. Over the past few decades, researchers have primarily focused on using physical deposition methods to construct superamphiphobic surfaces using fine-sized nanoparticles (< 100 nm). However, porous hollow SiO2 particles (PH-SiO2), which are typically large spheres, have a highly hierarchical structure and can provide lower solid-liquid contact fractions than those provided by fine-sized particles. In this study, we used PH-SiO2 as building blocks and combined them with poly (dimethylsiloxane) to construct a mechanically robust coating on fiber by spray-coating. After chemical vapor deposition treatment, the coating exhibited excellent superamphiphobicity and could repel various liquids, covering a wide range of surface tensions (27.4–72.0 mN·m−1).
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.