{"title":"A fast multipole method for stellar dynamics","authors":"Walter Dehnen","doi":"10.1186/s40668-014-0001-7","DOIUrl":null,"url":null,"abstract":"<p>The approximate computation of all gravitational forces between <i>N</i> interacting particles via the fast multipole method (FMM) can be made as accurate as direct summation, but requires less than <math><mi>O</mi><mo>(</mo><mi>N</mi><mo>)</mo></math> operations. FMM groups particles into spatially bounded cells and uses cell-cell interactions to approximate the force at <i>any</i> position within the sink cell by a Taylor expansion obtained from the multipole expansion of the source cell. By employing a novel estimate for the errors incurred in this process, I minimise the computational effort required for a given accuracy and obtain a well-behaved distribution of force errors. For relative force errors of ~10<sup>?7</sup>, the computational costs exhibit an empirical scaling of <math><mo>∝</mo><msup>\n <mi>N</mi>\n <mn>0.87</mn>\n </msup></math>. My implementation (running on a 16 core node) out-performs a GPU-based direct summation with comparable force errors for <math><mi>N</mi><mo>?</mo><msup>\n <mrow>\n <mn>10</mn>\n </mrow>\n <mrow>\n <mn>5</mn>\n </mrow>\n </msup></math>.</p>","PeriodicalId":523,"journal":{"name":"Computational Astrophysics and Cosmology","volume":"1 1","pages":""},"PeriodicalIF":16.2810,"publicationDate":"2014-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40668-014-0001-7","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Astrophysics and Cosmology","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s40668-014-0001-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53
Abstract
The approximate computation of all gravitational forces between N interacting particles via the fast multipole method (FMM) can be made as accurate as direct summation, but requires less than operations. FMM groups particles into spatially bounded cells and uses cell-cell interactions to approximate the force at any position within the sink cell by a Taylor expansion obtained from the multipole expansion of the source cell. By employing a novel estimate for the errors incurred in this process, I minimise the computational effort required for a given accuracy and obtain a well-behaved distribution of force errors. For relative force errors of ~10?7, the computational costs exhibit an empirical scaling of . My implementation (running on a 16 core node) out-performs a GPU-based direct summation with comparable force errors for .
期刊介绍:
Computational Astrophysics and Cosmology (CompAC) is now closed and no longer accepting submissions. However, we would like to assure you that Springer will maintain an archive of all articles published in CompAC, ensuring their accessibility through SpringerLink's comprehensive search functionality.