Prediction of Surface Roughness of End Milling for Cycloidal Gears Based on Orthogonal Tests

Q2 Engineering
Shan-ming Luo, Longxing Liao, Jingyu Mo
{"title":"Prediction of Surface Roughness of End Milling for Cycloidal Gears Based on Orthogonal Tests","authors":"Shan-ming Luo, Longxing Liao, Jingyu Mo","doi":"10.24423/ENGTRANS.860.20180830","DOIUrl":null,"url":null,"abstract":"End milling method is applied to machining of cycloidal gears to improve the cutting quality and efficiency. The influence of milling parameters on the surface roughness is investigated based upon orthogonal tests with the four factors and four levels, as well as analysis of range and variance. A model to predict the surface roughness is built up on basis of the probability statistics and multivariate nonlinear regression analysis. Significance tests are conducted on the prediction model, and the interactive effect of these parameters on the surface roughness is figured out so as to propose optimization schemes. The results show that the shaft inclination angle has the biggest impact on the surface roughness, followed by the feed per tooth, the radial feed and the spindle speed. The prediction model of surface roughness is proved to have high prediction accuracy. This study aims to provide references for the improvement of machining quality of cycloidal gears and optimization of milling parameters.","PeriodicalId":38552,"journal":{"name":"Engineering Transactions","volume":"66 1","pages":"339-352"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24423/ENGTRANS.860.20180830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

End milling method is applied to machining of cycloidal gears to improve the cutting quality and efficiency. The influence of milling parameters on the surface roughness is investigated based upon orthogonal tests with the four factors and four levels, as well as analysis of range and variance. A model to predict the surface roughness is built up on basis of the probability statistics and multivariate nonlinear regression analysis. Significance tests are conducted on the prediction model, and the interactive effect of these parameters on the surface roughness is figured out so as to propose optimization schemes. The results show that the shaft inclination angle has the biggest impact on the surface roughness, followed by the feed per tooth, the radial feed and the spindle speed. The prediction model of surface roughness is proved to have high prediction accuracy. This study aims to provide references for the improvement of machining quality of cycloidal gears and optimization of milling parameters.
基于正交试验的摆线齿轮端铣刀面粗糙度预测
将端铣削法应用于摆线齿轮的加工,提高了加工质量和效率。采用四因素四水平正交试验,并进行极差和方差分析,研究了铣削参数对表面粗糙度的影响。建立了基于概率统计和多元非线性回归分析的表面粗糙度预测模型。对预测模型进行显著性检验,找出这些参数对表面粗糙度的交互影响,提出优化方案。结果表明:轴倾角对表面粗糙度的影响最大,其次是每齿进给量、径向进给量和主轴转速;结果表明,该表面粗糙度预测模型具有较高的预测精度。该研究旨在为提高摆线齿轮的加工质量和铣削参数的优化提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Transactions
Engineering Transactions Engineering-Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
0
期刊介绍: Engineering Transactions (formerly Rozprawy Inżynierskie) is a refereed international journal founded in 1952. The journal promotes research and practice in engineering science and provides a forum for interdisciplinary publications combining mechanics with: Material science, Mechatronics, Biomechanics and Biotechnologies, Environmental science, Photonics, Information technologies, Other engineering applications. The journal publishes original papers covering a broad area of research activities including: experimental and hybrid techniques, analytical and numerical approaches. Review articles and special issues are also welcome. Following long tradition, all articles are peer reviewed and our expert referees ensure that the papers accepted for publication comply with high scientific standards. Engineering Transactions is a quarterly journal intended to be interesting and useful for the researchers and practitioners in academic and industrial communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信