Punctuated Chaos and Indeterminism in Self-gravitating Many-body Systems

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
T. Boekholt, S. P. Portegies Zwart, D. Heggie
{"title":"Punctuated Chaos and Indeterminism in Self-gravitating Many-body Systems","authors":"T. Boekholt, S. P. Portegies Zwart, D. Heggie","doi":"10.1142/s0218271823420038","DOIUrl":null,"url":null,"abstract":"Dynamical chaos is a fundamental manifestation of gravity in astrophysical, many-body systems. The spectrum of Lyapunov exponents quantifies the associated exponential response to small perturbations. Analytical derivations of these exponents are critical for understanding the stability and predictability of observed systems. This essay presents a new model for chaos in systems with eccentric and crossing orbits. Here, exponential divergence is not a continuous process but rather the cumulative effect of an ever-increasing linear response driven by discrete events at regular intervals, i.e., punctuated chaos. We show that long-lived systems with punctuated chaos can magnify Planck length perturbations to astronomical scales within their lifetime, rendering them fundamentally indeterministic.","PeriodicalId":50307,"journal":{"name":"International Journal of Modern Physics D","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0218271823420038","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamical chaos is a fundamental manifestation of gravity in astrophysical, many-body systems. The spectrum of Lyapunov exponents quantifies the associated exponential response to small perturbations. Analytical derivations of these exponents are critical for understanding the stability and predictability of observed systems. This essay presents a new model for chaos in systems with eccentric and crossing orbits. Here, exponential divergence is not a continuous process but rather the cumulative effect of an ever-increasing linear response driven by discrete events at regular intervals, i.e., punctuated chaos. We show that long-lived systems with punctuated chaos can magnify Planck length perturbations to astronomical scales within their lifetime, rendering them fundamentally indeterministic.
自引力多体系统中的间断混沌和非决定论
动态混沌是天体物理多体系统中引力的基本表现。李雅普诺夫指数谱量化了对小扰动的相关指数响应。这些指数的解析推导对于理解观测系统的稳定性和可预测性至关重要。本文提出了一个新的偏心轨道交叉系统混沌模型。在这里,指数发散不是一个连续的过程,而是一个不断增加的线性响应的累积效应,这些响应是由有规则间隔的离散事件驱动的,即间断的混沌。我们表明,具有间断混沌的长寿命系统可以在其生命周期内将普朗克长度扰动放大到天文尺度,从而使它们从根本上不确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Modern Physics D
International Journal of Modern Physics D 地学天文-天文与天体物理
CiteScore
3.80
自引率
9.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Gravitation, astrophysics and cosmology are exciting and rapidly advancing fields of research. This journal aims to accommodate and promote this expansion of information and ideas and it features research papers and reviews on theoretical, observational and experimental findings in these fields. Among the topics covered are general relativity, quantum gravity, gravitational experiments, quantum cosmology, observational cosmology, particle cosmology, large scale structure, high energy astrophysics, compact objects, cosmic particles and radiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信