Paul Gölz, Anson Kahng, Simon Mackenzie, A. Procaccia
{"title":"The Fluid Mechanics of Liquid Democracy","authors":"Paul Gölz, Anson Kahng, Simon Mackenzie, A. Procaccia","doi":"10.1145/3485012","DOIUrl":null,"url":null,"abstract":"Liquid democracy is the principle of making collective decisions by letting agents transitively delegate their votes. Despite its significant appeal, it has become apparent that a weakness of liquid democracy is that a small subset of agents may gain massive influence. To address this, we propose to change the current practice by allowing agents to specify multiple delegation options instead of just one. Much like in nature, where—fluid mechanics teaches us—liquid maintains an equal level in connected vessels, we seek to control the flow of votes in a way that balances influence as much as possible. Specifically, we analyze the problem of choosing delegations to approximately minimize the maximum number of votes entrusted to any agent by drawing connections to the literature on confluent flow. We also introduce a random graph model for liquid democracy and use it to demonstrate the benefits of our approach both theoretically and empirically.","PeriodicalId":42216,"journal":{"name":"ACM Transactions on Economics and Computation","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 62
Abstract
Liquid democracy is the principle of making collective decisions by letting agents transitively delegate their votes. Despite its significant appeal, it has become apparent that a weakness of liquid democracy is that a small subset of agents may gain massive influence. To address this, we propose to change the current practice by allowing agents to specify multiple delegation options instead of just one. Much like in nature, where—fluid mechanics teaches us—liquid maintains an equal level in connected vessels, we seek to control the flow of votes in a way that balances influence as much as possible. Specifically, we analyze the problem of choosing delegations to approximately minimize the maximum number of votes entrusted to any agent by drawing connections to the literature on confluent flow. We also introduce a random graph model for liquid democracy and use it to demonstrate the benefits of our approach both theoretically and empirically.
期刊介绍:
The ACM Transactions on Economics and Computation welcomes submissions of the highest quality that concern the intersection of computer science and economics. Of interest to the journal is any topic relevant to both economists and computer scientists, including but not limited to the following: Agents in networks Algorithmic game theory Computation of equilibria Computational social choice Cost of strategic behavior and cost of decentralization ("price of anarchy") Design and analysis of electronic markets Economics of computational advertising Electronic commerce Learning in games and markets Mechanism design Paid search auctions Privacy Recommendation / reputation / trust systems Systems resilient against malicious agents.