Power-regular Bishop operators and spectral decompositions

IF 0.7 4区 数学 Q2 MATHEMATICS
E. Gallardo-Gutiérrez, Miguel Monsalve-López
{"title":"Power-regular Bishop operators and spectral decompositions","authors":"E. Gallardo-Gutiérrez, Miguel Monsalve-López","doi":"10.7900/jot.2019sep21.2256","DOIUrl":null,"url":null,"abstract":"It is proved that a wide class of Bishop-type operators Tϕ,τ are power-regular operators in Lp(Ω,μ), 1⩽p<∞, computing the exact value of the local spectral radius at any function u∈Lp(Ω,μ). Moreover, it is shown that the local spectral radius at any u coincides with the spectral radius of Tϕ,τ as far as u is non-zero. As a consequence, it is proved that non-invertible Bishop-type operators are non-decomposable whenever log|ϕ|∈L1(Ω,μ) (in particular, not quasinilpotent); not enjoying even the weaker spectral decompositions \\textit{Bishop property} (β) and \\textit{property} (δ).","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2019sep21.2256","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

It is proved that a wide class of Bishop-type operators Tϕ,τ are power-regular operators in Lp(Ω,μ), 1⩽p<∞, computing the exact value of the local spectral radius at any function u∈Lp(Ω,μ). Moreover, it is shown that the local spectral radius at any u coincides with the spectral radius of Tϕ,τ as far as u is non-zero. As a consequence, it is proved that non-invertible Bishop-type operators are non-decomposable whenever log|ϕ|∈L1(Ω,μ) (in particular, not quasinilpotent); not enjoying even the weaker spectral decompositions \textit{Bishop property} (β) and \textit{property} (δ).
幂正则Bishop算子和谱分解
证明了一类广泛的bishop型算子tφ,τ是Lp(Ω,μ), 1≤p<∞上的幂正则算子,可以计算任意函数u∈Lp(Ω,μ)处的局部谱半径的精确值。此外,还表明,只要u不为零,任意u处的局部谱半径与tφ,τ的谱半径重合。因此,证明了当log| φ |∈L1(Ω,μ)时,非可逆的bishop型算子是不可分解的(特别是,不是拟无效的);不具有更弱的光谱分解\textit{Bishop属性}(β)和\textit{属性}(δ)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信