{"title":"Six Houses and Three Utilities on A Coffee Mug","authors":"Li Zhou","doi":"10.1080/00029890.2023.2177485","DOIUrl":null,"url":null,"abstract":"In a recent Monthly article [1], Hammack and Kainen displayed drawings of the complete bipartite graphs K3,3 and K4,4 on the torus without crossed edges. Notice that if K3,n can be so drawn on the torus, then by the Euler characteristic, 0 = V − E + F = (3 + n) − 3n + F . Each face has at least four edges, and each edge is shared by two faces, so F ≤ E/2 = 3n/2. Therefore, 0 ≤ 3 − 2n + 3n/2, so n ≤ 6. It is known that this necessary condition is also sufficient [1]. The graph K3,3 has been posed as a classical puzzle about connecting three houses with three utilities without crossing utility lines. This is impossible on the sphere (or plane) but possible on a torus, or equivalently, on a coffee mug. In fact, such a puzzle on a coffee mug has been popularized by an entertaining star-studded video [2]. Therefore, it would make a more challenging puzzle to put on a coffee mug six houses a, b, c, d, e, and f , and three utilities u, v, and w! Two solutions are shown below, by gluing the opposite sides of the square or hexagon to make a torus. In the less familiar hexagonal identification [3, pp. 4–5], we glue the top and bottom sides first to get a cylinder, then we glue the two end-circles of the cylinder with a 180◦ twist to obtain a torus.","PeriodicalId":7761,"journal":{"name":"American Mathematical Monthly","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Mathematical Monthly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00029890.2023.2177485","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In a recent Monthly article [1], Hammack and Kainen displayed drawings of the complete bipartite graphs K3,3 and K4,4 on the torus without crossed edges. Notice that if K3,n can be so drawn on the torus, then by the Euler characteristic, 0 = V − E + F = (3 + n) − 3n + F . Each face has at least four edges, and each edge is shared by two faces, so F ≤ E/2 = 3n/2. Therefore, 0 ≤ 3 − 2n + 3n/2, so n ≤ 6. It is known that this necessary condition is also sufficient [1]. The graph K3,3 has been posed as a classical puzzle about connecting three houses with three utilities without crossing utility lines. This is impossible on the sphere (or plane) but possible on a torus, or equivalently, on a coffee mug. In fact, such a puzzle on a coffee mug has been popularized by an entertaining star-studded video [2]. Therefore, it would make a more challenging puzzle to put on a coffee mug six houses a, b, c, d, e, and f , and three utilities u, v, and w! Two solutions are shown below, by gluing the opposite sides of the square or hexagon to make a torus. In the less familiar hexagonal identification [3, pp. 4–5], we glue the top and bottom sides first to get a cylinder, then we glue the two end-circles of the cylinder with a 180◦ twist to obtain a torus.
期刊介绍:
The Monthly''s readers expect a high standard of exposition; they look for articles that inform, stimulate, challenge, enlighten, and even entertain. Monthly articles are meant to be read, enjoyed, and discussed, rather than just archived. Articles may be expositions of old or new results, historical or biographical essays, speculations or definitive treatments, broad developments, or explorations of a single application. Novelty and generality are far less important than clarity of exposition and broad appeal. Appropriate figures, diagrams, and photographs are encouraged.
Notes are short, sharply focused, and possibly informal. They are often gems that provide a new proof of an old theorem, a novel presentation of a familiar theme, or a lively discussion of a single issue.
Abstracts for articles or notes should entice the prospective reader into exploring the subject of the paper and should make it clear to the reader why this paper is interesting and important. The abstract should highlight the concepts of the paper rather than summarize the mechanics. The abstract is the first impression of the paper, not a technical summary of the paper. Excessive use of notation is discouraged as it can limit the interest of the broad readership of the MAA, and can limit search-ability of the article.