Thai Hom Mali rice grading using machine learning and deep learning approaches

Q2 Decision Sciences
Akara Thammastitkul, Jitsanga Petsuwan
{"title":"Thai Hom Mali rice grading using machine learning and deep learning approaches","authors":"Akara Thammastitkul, Jitsanga Petsuwan","doi":"10.11591/ijai.v12.i2.pp815-822","DOIUrl":null,"url":null,"abstract":"Thai Jasmine rice or Thai Hom Mali rice is a well-known rice type that originated in Thailand. Rice grain qualities are important in determining market pricing and are used in grading systems. The purpose of this research is to use machine learning and deep learning to improve the grading of Thai Hom Mali rice following standardized grading criteria. The appearance of grains and foreign items will determine the grade of rice. The experiment has two parts: grain categorization and rice grading. Multi-class support vector machine (SVM) and convolutional neural network (CNN) are proposed. There are 15 features used as input for multi-class SVM, including morphology and color features. With ImageNet pre-trained weights, CNN with DenseNet201 architecture is implemented. The experiment also tested into how CNN worked with both original and preprocessed images. The results are then compared to a neural network (NN) baseline approach. The CNN approach, which identified each rice variety using preprocessed images, archieved the greatest accuracy rate of 98.25%, with an average accuracy of 94.52% across six categories of rice grading.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i2.pp815-822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

Thai Jasmine rice or Thai Hom Mali rice is a well-known rice type that originated in Thailand. Rice grain qualities are important in determining market pricing and are used in grading systems. The purpose of this research is to use machine learning and deep learning to improve the grading of Thai Hom Mali rice following standardized grading criteria. The appearance of grains and foreign items will determine the grade of rice. The experiment has two parts: grain categorization and rice grading. Multi-class support vector machine (SVM) and convolutional neural network (CNN) are proposed. There are 15 features used as input for multi-class SVM, including morphology and color features. With ImageNet pre-trained weights, CNN with DenseNet201 architecture is implemented. The experiment also tested into how CNN worked with both original and preprocessed images. The results are then compared to a neural network (NN) baseline approach. The CNN approach, which identified each rice variety using preprocessed images, archieved the greatest accuracy rate of 98.25%, with an average accuracy of 94.52% across six categories of rice grading.
使用机器学习和深度学习方法对泰洪马里大米进行分级
泰国茉莉花米或泰国香米是一种著名的大米品种,起源于泰国。稻米品质是决定市场价格的重要因素,并用于分级制度。本研究的目的是利用机器学习和深度学习,按照标准化的分级标准来改进泰国红马里大米的分级。谷物和外来物品的外观将决定大米的等级。试验分为两部分:粮食分级和稻米分级。提出了多类支持向量机(SVM)和卷积神经网络(CNN)。多类支持向量机有15个特征作为输入,包括形态学特征和颜色特征。利用ImageNet预训练权值,实现了具有DenseNet201架构的CNN。该实验还测试了CNN如何处理原始图像和预处理图像。然后将结果与神经网络(NN)基线方法进行比较。CNN方法使用预处理图像对每个水稻品种进行识别,准确率最高达到98.25%,在6类水稻分级中平均准确率为94.52%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信