Techniques for predicting dark web events focused on the delivery of illicit products and ordered crime

Q2 Computer Science
Romil Rawat, Olukayode Ayodele Oki, Sakthidasan Sankaran, Hector Florez, S. A. Ajagbe
{"title":"Techniques for predicting dark web events focused on the delivery of illicit products and ordered crime","authors":"Romil Rawat, Olukayode Ayodele Oki, Sakthidasan Sankaran, Hector Florez, S. A. Ajagbe","doi":"10.11591/ijece.v13i5.pp5354-5365","DOIUrl":null,"url":null,"abstract":"Malicious actors, specially trained professionals operating anonymously on the dark web (DW) platform to conduct cyber fraud, illegal drug supply, online kidnapping orders, CryptoLocker induction, contract hacking, terrorist recruitment portals on the online social network (OSN) platform, and financing are always a possibility in the hyperspace. The amount and variety of unlawful actions are increasing, which has prompted law enforcement (LE) agencies to develop efficient prevention tactics. In the current atmosphere of rapidly expanding cybercrime, conventional crime-solving methods are unable to produce results due to their slowness and inefficiency. The methods for accurately predicting crime before it happens \"automated machine\" to help police officers ease the burden on personnel while also assisting in preventing offense. To achieve and explain the results of a few cases in which such approaches were applied, we advise combining machine learning (ML) with computer vision (CV) strategies. This study's objective is to present dark web crime statistics and a forecasting model for generating alerts of illegal operations like drug supply, people smuggling, terrorist staffing and radicalization, and deceitful activities that are connected to gangs or organizations showing online presence using ML and CV to help law enforcement organizations identify, and accumulate proactive tactics for solving crimes.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5354-5365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Malicious actors, specially trained professionals operating anonymously on the dark web (DW) platform to conduct cyber fraud, illegal drug supply, online kidnapping orders, CryptoLocker induction, contract hacking, terrorist recruitment portals on the online social network (OSN) platform, and financing are always a possibility in the hyperspace. The amount and variety of unlawful actions are increasing, which has prompted law enforcement (LE) agencies to develop efficient prevention tactics. In the current atmosphere of rapidly expanding cybercrime, conventional crime-solving methods are unable to produce results due to their slowness and inefficiency. The methods for accurately predicting crime before it happens "automated machine" to help police officers ease the burden on personnel while also assisting in preventing offense. To achieve and explain the results of a few cases in which such approaches were applied, we advise combining machine learning (ML) with computer vision (CV) strategies. This study's objective is to present dark web crime statistics and a forecasting model for generating alerts of illegal operations like drug supply, people smuggling, terrorist staffing and radicalization, and deceitful activities that are connected to gangs or organizations showing online presence using ML and CV to help law enforcement organizations identify, and accumulate proactive tactics for solving crimes.
预测暗网事件的技术侧重于非法产品的交付和有命令的犯罪
恶意行为者、受过专门训练的专业人员在暗网(DW)平台上匿名进行网络欺诈、非法毒品供应、在线绑架令、CryptoLocker入职、合同黑客攻击、在线社交网络(OSN)平台上的恐怖分子招募门户网站,以及融资,在超空间中总是有可能的。非法行为的数量和种类都在增加,这促使执法机构制定有效的预防策略。在当前网络犯罪迅速扩大的氛围下,传统的破案方法由于速度慢、效率低而无法产生效果。在犯罪发生之前准确预测犯罪的方法是“自动化机器”,帮助警察减轻人员负担,同时也有助于预防犯罪。为了获得并解释应用此类方法的少数案例的结果,我们建议将机器学习(ML)与计算机视觉(CV)策略相结合。这项研究的目的是提供暗网犯罪统计数据和预测模型,以生成非法活动的警报,如毒品供应、人口走私、恐怖分子人员配置和激进化,以及与使用ML和CV显示在线存在的团伙或组织有关的欺诈活动,积累积极主动的破案策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信