{"title":"A fast and accurate algorithm for solving linear systems associated with a class of negative matrix","authors":"Zhao Yang","doi":"10.1002/nla.2483","DOIUrl":null,"url":null,"abstract":"A class of negative matrices including Vandermonde‐like matrices tends to be extremely ill‐conditioned, and linear systems associated with this class of matrices appear in the polynomial interpolation problems. In this article, we present a fast and accurate algorithm with O(n2)$$ O\\left({n}^2\\right) $$ complexity to solve the linear systems whose coefficient matrices belong to the class of negative matrix. We show that the inverse of any such matrix is generated in a subtraction‐free manner. Consequently, the solutions of linear systems associated with the class of negative matrix are accurately determined by parameterization matrices of coefficient matrices, and a pleasantly componentwise forward error is provided to illustrate that each component of the solution is computed to high accuracy. Numerical experiments are performed to confirm the claimed high accuracy.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2483","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
A class of negative matrices including Vandermonde‐like matrices tends to be extremely ill‐conditioned, and linear systems associated with this class of matrices appear in the polynomial interpolation problems. In this article, we present a fast and accurate algorithm with O(n2)$$ O\left({n}^2\right) $$ complexity to solve the linear systems whose coefficient matrices belong to the class of negative matrix. We show that the inverse of any such matrix is generated in a subtraction‐free manner. Consequently, the solutions of linear systems associated with the class of negative matrix are accurately determined by parameterization matrices of coefficient matrices, and a pleasantly componentwise forward error is provided to illustrate that each component of the solution is computed to high accuracy. Numerical experiments are performed to confirm the claimed high accuracy.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.