The n-fold reduced bar construction

IF 0.5 4区 数学
Sonja Lj. Čukić, Zoran Petrić
{"title":"The n-fold reduced bar construction","authors":"Sonja Lj. Čukić,&nbsp;Zoran Petrić","doi":"10.1007/s40062-017-0191-1","DOIUrl":null,"url":null,"abstract":"<p>This paper is about a correspondence between monoidal structures in categories and <i>n</i>-fold loop spaces. We developed a new syntactical technique whose role is to substitute the coherence results, which were the main ingredients in the proof that the Segal–Thomason bar construction provides an appropriate simplicial space. The results we present here enable more common categories to enter this delooping machine. For example, such as the category of finite sets with two monoidal structures brought by the disjoint union and Cartesian product.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"13 3","pages":"503 - 543"},"PeriodicalIF":0.5000,"publicationDate":"2017-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-017-0191-1","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-017-0191-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is about a correspondence between monoidal structures in categories and n-fold loop spaces. We developed a new syntactical technique whose role is to substitute the coherence results, which were the main ingredients in the proof that the Segal–Thomason bar construction provides an appropriate simplicial space. The results we present here enable more common categories to enter this delooping machine. For example, such as the category of finite sets with two monoidal structures brought by the disjoint union and Cartesian product.

Abstract Image

n倍减杆结构
本文研究了范畴中单形结构与n重环空间的对应关系。我们开发了一种新的句法技术,其作用是代替相干结果,相干结果是证明Segal-Thomason条结构提供适当的简单空间的主要成分。我们在这里提出的结果使更多的常见类别能够进入这台正在发展的机器。例如,由不相交并和笛卡尔积所带来的具有两个单形结构的有限集的范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信