Characterizing divergence and thickness in right-angled Coxeter groups

Pub Date : 2022-09-27 DOI:10.1112/topo.12267
Ivan Levcovitz
{"title":"Characterizing divergence and thickness in right-angled Coxeter groups","authors":"Ivan Levcovitz","doi":"10.1112/topo.12267","DOIUrl":null,"url":null,"abstract":"<p>We completely classify the possible divergence functions for right-angled Coxeter groups (RACGs). In particular, we show that the divergence of any such group is either polynomial, exponential, or infinite. We prove that a RACG is strongly thick of order <math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> if and only if its divergence function is a polynomial of degree <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$k+1$</annotation>\n </semantics></math>. Moreover, we show that the exact divergence function of a RACG can easily be computed from its defining graph by an invariant we call the hypergraph index.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12267","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We completely classify the possible divergence functions for right-angled Coxeter groups (RACGs). In particular, we show that the divergence of any such group is either polynomial, exponential, or infinite. We prove that a RACG is strongly thick of order k $k$ if and only if its divergence function is a polynomial of degree k + 1 $k+1$ . Moreover, we show that the exact divergence function of a RACG can easily be computed from its defining graph by an invariant we call the hypergraph index.

Abstract Image

分享
查看原文
直角Coxeter群的散度和厚度特征
我们完全分类了直角Coxeter群(racg)可能的散度函数。特别地,我们证明了任何这类群的散度要么是多项式的,要么是指数的,要么是无限的。证明了一个RACG是k阶强厚的当且仅当它的散度函数是k+1阶的多项式。此外,我们证明了RACG的确切散度函数可以很容易地从它的定义图中通过一个我们称为超图索引的不变量计算出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信