{"title":"Characterizing divergence and thickness in right-angled Coxeter groups","authors":"Ivan Levcovitz","doi":"10.1112/topo.12267","DOIUrl":null,"url":null,"abstract":"<p>We completely classify the possible divergence functions for right-angled Coxeter groups (RACGs). In particular, we show that the divergence of any such group is either polynomial, exponential, or infinite. We prove that a RACG is strongly thick of order <math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> if and only if its divergence function is a polynomial of degree <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$k+1$</annotation>\n </semantics></math>. Moreover, we show that the exact divergence function of a RACG can easily be computed from its defining graph by an invariant we call the hypergraph index.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12267","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We completely classify the possible divergence functions for right-angled Coxeter groups (RACGs). In particular, we show that the divergence of any such group is either polynomial, exponential, or infinite. We prove that a RACG is strongly thick of order if and only if its divergence function is a polynomial of degree . Moreover, we show that the exact divergence function of a RACG can easily be computed from its defining graph by an invariant we call the hypergraph index.