Polynomials on the Sierpiński gasket with respect to different Laplacians which are symmetric and self-similar

IF 1.1 4区 数学 Q1 MATHEMATICS
C. Loring, W. J. Ogden, Ely Sandine, R. Strichartz
{"title":"Polynomials on the Sierpiński gasket with respect to different Laplacians which are symmetric and self-similar","authors":"C. Loring, W. J. Ogden, Ely Sandine, R. Strichartz","doi":"10.4171/jfg/95","DOIUrl":null,"url":null,"abstract":"We study the analogue of polynomials (solutions to $\\Delta u^{n+1} =0$ for some $n$) on the Sierpinski gasket ($SG$) with respect to a family of symmetric, self-similar Laplacians constructed by Fang, King, Lee, and Strichartz, extending the work of Needleman, Strichartz, Teplyaev, and Yung on the polynomials with respect to the standard Kigami Laplacian. We define a basis for the space of polynomials, the monomials, characterized by the property that a certain \"derivative\" is 1 at one of the boundary points, while all other \"derivatives\" vanish, and we compute the values of the monomials at the boundary points of $SG$. We then present some data which suggest surprising relationships between the values of the monomials at the boundary and certain Neumann eigenvalues of the family of symmetric self-similar Laplacians. Surprisingly, the results for the general case are quite different from the results for the Kigami Laplacian.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/95","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We study the analogue of polynomials (solutions to $\Delta u^{n+1} =0$ for some $n$) on the Sierpinski gasket ($SG$) with respect to a family of symmetric, self-similar Laplacians constructed by Fang, King, Lee, and Strichartz, extending the work of Needleman, Strichartz, Teplyaev, and Yung on the polynomials with respect to the standard Kigami Laplacian. We define a basis for the space of polynomials, the monomials, characterized by the property that a certain "derivative" is 1 at one of the boundary points, while all other "derivatives" vanish, and we compute the values of the monomials at the boundary points of $SG$. We then present some data which suggest surprising relationships between the values of the monomials at the boundary and certain Neumann eigenvalues of the family of symmetric self-similar Laplacians. Surprisingly, the results for the general case are quite different from the results for the Kigami Laplacian.
关于不同拉普拉斯算子的Sierpiński垫圈上的多项式是对称的和自相似的
我们研究了Sierpinski垫圈($SG$)上多项式的相似性(对于一些$n$,$\Delta u^{n+1}=0$的解),关于由Fang、King、Lee和Strichartz构造的对称自相似拉普拉斯算子族,扩展了Needleman、Strichartz、Teplyaev和Yung关于多项式的工作,关于标准Kigami拉普拉斯算子。我们定义了多项式空间的一个基,即单项式,其特征是某个“导数”在其中一个边界点为1,而所有其他“导数”都消失,我们计算了$SG$边界点上单项式的值。然后,我们给出了一些数据,这些数据表明了对称自相似拉普拉斯算子族的边界单项式的值和某些Neumann特征值之间的惊人关系。令人惊讶的是,一般情况下的结果与Kigami-Laplacian的结果截然不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信