Statistical-machine-learning-based intelligent relaxation for set-covering location models to identify locations of charging stations for electric vehicles
IF 2.1 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
{"title":"Statistical-machine-learning-based intelligent relaxation for set-covering location models to identify locations of charging stations for electric vehicles","authors":"Selcen Gülsüm Aslan Özşahin , Babek Erdebilli","doi":"10.1016/j.ejtl.2023.100118","DOIUrl":null,"url":null,"abstract":"<div><p>Europe strengthens its policies on climate change, green transition, and sustainable energy by addressing the high greenhouse-gas emissions in the transportation sector. Europe aims to reduce such emissions and reach a state of carbon neutrality by 2030 and 2050, respectively. This is feasible only if electric vehicles dominate the transportation sector. Paving the way for electric vehicle deployment on roads is subject to the provision of electric-vehicle-charging stations on the roads such that sufficiently good driving experience without any obstacles can be achieved. To address this timely societal challenge, we proposed a novel methodology by using the well-known facility-location-allocation methodology named set-covering location models with statistical machine learning and developed it for the problem settings of identifying electric-vehicle-charging station locations. Statistical machine learning was employed in the proposed model to more precisely identify and determine feasible coverage sets. We demonstrated the efficiency of the proposed model for the Capital Region of Denmark, where the green transition is part of the political agenda and is of severe societal concern, by using the newly collected main road transportation dataset.</p></div>","PeriodicalId":45871,"journal":{"name":"EURO Journal on Transportation and Logistics","volume":"12 ","pages":"Article 100118"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Transportation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192437623000158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Europe strengthens its policies on climate change, green transition, and sustainable energy by addressing the high greenhouse-gas emissions in the transportation sector. Europe aims to reduce such emissions and reach a state of carbon neutrality by 2030 and 2050, respectively. This is feasible only if electric vehicles dominate the transportation sector. Paving the way for electric vehicle deployment on roads is subject to the provision of electric-vehicle-charging stations on the roads such that sufficiently good driving experience without any obstacles can be achieved. To address this timely societal challenge, we proposed a novel methodology by using the well-known facility-location-allocation methodology named set-covering location models with statistical machine learning and developed it for the problem settings of identifying electric-vehicle-charging station locations. Statistical machine learning was employed in the proposed model to more precisely identify and determine feasible coverage sets. We demonstrated the efficiency of the proposed model for the Capital Region of Denmark, where the green transition is part of the political agenda and is of severe societal concern, by using the newly collected main road transportation dataset.
期刊介绍:
The EURO Journal on Transportation and Logistics promotes the use of mathematics in general, and operations research in particular, in the context of transportation and logistics. It is a forum for the presentation of original mathematical models, methodologies and computational results, focussing on advanced applications in transportation and logistics. The journal publishes two types of document: (i) research articles and (ii) tutorials. A research article presents original methodological contributions to the field (e.g. new mathematical models, new algorithms, new simulation techniques). A tutorial provides an introduction to an advanced topic, designed to ease the use of the relevant methodology by researchers and practitioners.