Hierarchical Models and Tuning of Random Walk Metropolis Algorithms

IF 1 Q3 STATISTICS & PROBABILITY
M. Bédard
{"title":"Hierarchical Models and Tuning of Random Walk Metropolis Algorithms","authors":"M. Bédard","doi":"10.1155/2019/8740426","DOIUrl":null,"url":null,"abstract":"We obtain weak convergence and optimal scaling results for the random walk Metropolis algorithm with a Gaussian proposal distribution. The sampler is applied to hierarchical target distributions, which form the building block of many Bayesian analyses. The global asymptotically optimal proposal variance derived may be computed as a function of the specific target distribution considered. We also introduce the concept of locally optimal tunings, i.e., tunings that depend on the current position of the Markov chain. The theorems are proved by studying the generator of the first and second components of the algorithm and verifying their convergence to the generator of a modified RWM algorithm and a diffusion process, respectively. The rate at which the algorithm explores its state space is optimized by studying the speed measure of the limiting diffusion process. We illustrate the theory with two examples. Applications of these results on simulated and real data are also presented.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/8740426","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/8740426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

Abstract

We obtain weak convergence and optimal scaling results for the random walk Metropolis algorithm with a Gaussian proposal distribution. The sampler is applied to hierarchical target distributions, which form the building block of many Bayesian analyses. The global asymptotically optimal proposal variance derived may be computed as a function of the specific target distribution considered. We also introduce the concept of locally optimal tunings, i.e., tunings that depend on the current position of the Markov chain. The theorems are proved by studying the generator of the first and second components of the algorithm and verifying their convergence to the generator of a modified RWM algorithm and a diffusion process, respectively. The rate at which the algorithm explores its state space is optimized by studying the speed measure of the limiting diffusion process. We illustrate the theory with two examples. Applications of these results on simulated and real data are also presented.
随机游走大都会算法的分层模型和调优
我们得到了具有高斯建议分布的随机漫步Metropolis算法的弱收敛性和最优缩放结果。采样器应用于分层目标分布,这构成了许多贝叶斯分析的基石。所导出的全局渐近最优建议方差可以计算为所考虑的特定目标分布的函数。我们还引入了局部最优调谐的概念,即依赖于马尔可夫链当前位置的调谐。通过研究算法的第一分量和第二分量的生成器,并分别验证了它们收敛于改进的RWM算法的生成器和扩散过程的生成器,证明了这些定理。通过研究极限扩散过程的速度度量,优化了算法探索状态空间的速度。我们用两个例子来说明这个理论。文中还介绍了这些结果在模拟和实际数据上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信