{"title":"Effects of sublethal doses of gossypol on haematological properties and biochemical metabolites of male rabbit","authors":"T. Ramadan, A. Rashad","doi":"10.4995/wrs.2019.11253","DOIUrl":null,"url":null,"abstract":"The purpose of this study was to investigate the effects of two sublethal doses of gossypol (GOS) (4 and 20 mg/kg of body weight), administered every other day, on some haematological, biochemical, enzymatic and electrolytic properties and amino and fatty acids in male rabbit blood plasma. The experiment lasted for 16 wk and included two phases: 1) administration period; rabbits were given the experimental doses of GOS for 8 wk; and 2) recovery period; rabbits were allowed 8 wk for complete withdrawal of drugs from the plasma. Results showed that low levels of gossypol increased ( P <0.01) haemoglobin, mean corpuscular haemoglobin and white blood cells compared to control. Plasma total protein was increased ( P <0.01) by the low GOS dose in both experimental phases. Likewise, glucose concentration was increased ( P <0.01) by the high GOS dose during the recovery period. Aspartate aminotransferase and alanine aminotransferase enzymes were increased ( P <0.01) by the high dose of GOS treatment only. Low GOS dose increased ( P <0.01) blood plasma Na+ concentration in the recovery period only. Results revealed that total essential amino acids (EAA), and EAA/non-EAA ratio were not affected in a dose-dependent manner during the treatment phase expect for plasma proline, which was increased along with non-EAA ( P <0.01) by high GOS dose. Additionally, GOS administration did not affect total unsaturated fatty acids (USFA), total saturated fatty acids (SFA) and SFA/USFA ratio in a dose-dependent manner. In conclusion, Gossypol treatment affected rabbit haematological parameters and biochemical properties of blood plasma in a dose-dependent manner.","PeriodicalId":23902,"journal":{"name":"World Rabbit Science","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Rabbit Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.4995/wrs.2019.11253","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this study was to investigate the effects of two sublethal doses of gossypol (GOS) (4 and 20 mg/kg of body weight), administered every other day, on some haematological, biochemical, enzymatic and electrolytic properties and amino and fatty acids in male rabbit blood plasma. The experiment lasted for 16 wk and included two phases: 1) administration period; rabbits were given the experimental doses of GOS for 8 wk; and 2) recovery period; rabbits were allowed 8 wk for complete withdrawal of drugs from the plasma. Results showed that low levels of gossypol increased ( P <0.01) haemoglobin, mean corpuscular haemoglobin and white blood cells compared to control. Plasma total protein was increased ( P <0.01) by the low GOS dose in both experimental phases. Likewise, glucose concentration was increased ( P <0.01) by the high GOS dose during the recovery period. Aspartate aminotransferase and alanine aminotransferase enzymes were increased ( P <0.01) by the high dose of GOS treatment only. Low GOS dose increased ( P <0.01) blood plasma Na+ concentration in the recovery period only. Results revealed that total essential amino acids (EAA), and EAA/non-EAA ratio were not affected in a dose-dependent manner during the treatment phase expect for plasma proline, which was increased along with non-EAA ( P <0.01) by high GOS dose. Additionally, GOS administration did not affect total unsaturated fatty acids (USFA), total saturated fatty acids (SFA) and SFA/USFA ratio in a dose-dependent manner. In conclusion, Gossypol treatment affected rabbit haematological parameters and biochemical properties of blood plasma in a dose-dependent manner.
期刊介绍:
World Rabbit Science is the official journal of the World Rabbit Science Association (WRSA). One of the main objectives of the WRSA is to encourage communication and collaboration among individuals and organisations associated with rabbit production and rabbit science in general. Subject areas include breeding, genetics, production, management, environment, health, nutrition, physiology, reproduction, behaviour, welfare, immunology, molecular biology, metabolism, processing and products.
World Rabbit Science is the only international peer-reviewed journal included in the ISI Thomson list dedicated to publish original research in the field of rabbit science. Papers or reviews of the literature submitted to World Rabbit Science must not have been published previously in an international refereed scientific journal. Previous presentations at a scientific meeting, field day reports or similar documents can be published in World Rabbit Science, but they will be also subjected to the peer-review process.
World Rabbit Science will publish papers of international relevance including original research articles, descriptions of novel techniques, contemporaryreviews and meta-analyses. Short communications will only accepted in special cases where, in the Editor''s judgement, the contents are exceptionally exciting, novel or timely. Proceedings of rabbit scientific meetings and conference reports will be considered for special issues.
World Rabbit Science is published in English four times a year in a single volume. Authors may publish in World Rabbit Science regardless of the membership in the World Rabbit Science Association, even if joining the WRSA is encouraged. Views expressed in papers published in World Rabbit Science represent the opinion of the author(s) and do not necessarily reflect the official policy of the WRSA or the Editor-in-Chief.