{"title":"Financial Futures Prediction Using Fuzzy Rough Set and Synthetic Minority Oversampling Technique","authors":"Shangkun Deng, Yingke Zhu, Rui-Zhe Liu, Wanyu Xu","doi":"10.1155/2022/7622906","DOIUrl":null,"url":null,"abstract":"In this research, a novel approach called SMOTE-FRS is proposed for movement prediction and trading simulation of the Chinese Stock Index 300 (CSI300) futures, which is the most crucial financial futures in the Chinese A-share market. First, the SMOTE- (Synthetic Minority Oversampling Technique-) based method is employed to address the sample unbalance problem by oversampling the minority class and undersampling the majority class of the futures price change. Then, the FRS- (fuzzy rough set-) based method, as an efficient tool for analyzing complex and nonlinear information with high noise and uncertainty of financial time series, is adopted for the price change multiclassification of the CSI300 futures. Next, based on the multiclassification results of the futures price movement, a trading strategy is developed to execute a one-year simulated trading for an out-of-sample test of the trained model. From the experimental results, it is found that the proposed method averagely yielded an accumulated return of 6.36%, a F1-measure of 65.94%, and a hit ratio of 62.39% in the four testing periods, indicating that the proposed method is more accurate and more profitable than the benchmarks. Therefore, the proposed method could be applied by the market participants as an alternative prediction and trading system to forecast and trade in the Chinese financial futures market.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/7622906","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 2
Abstract
In this research, a novel approach called SMOTE-FRS is proposed for movement prediction and trading simulation of the Chinese Stock Index 300 (CSI300) futures, which is the most crucial financial futures in the Chinese A-share market. First, the SMOTE- (Synthetic Minority Oversampling Technique-) based method is employed to address the sample unbalance problem by oversampling the minority class and undersampling the majority class of the futures price change. Then, the FRS- (fuzzy rough set-) based method, as an efficient tool for analyzing complex and nonlinear information with high noise and uncertainty of financial time series, is adopted for the price change multiclassification of the CSI300 futures. Next, based on the multiclassification results of the futures price movement, a trading strategy is developed to execute a one-year simulated trading for an out-of-sample test of the trained model. From the experimental results, it is found that the proposed method averagely yielded an accumulated return of 6.36%, a F1-measure of 65.94%, and a hit ratio of 62.39% in the four testing periods, indicating that the proposed method is more accurate and more profitable than the benchmarks. Therefore, the proposed method could be applied by the market participants as an alternative prediction and trading system to forecast and trade in the Chinese financial futures market.
期刊介绍:
Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike.
As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.