L. K. Moey, Seng Keat Cheong, Md Akkik Al Zobaied, V. Tai, T. F. Go, P. L. Chong
{"title":"Impact of eave and roof pitch on cross ventilation for an isolated building with sawtooth roof","authors":"L. K. Moey, Seng Keat Cheong, Md Akkik Al Zobaied, V. Tai, T. F. Go, P. L. Chong","doi":"10.15282/jmes.17.2.2023.6.0750","DOIUrl":null,"url":null,"abstract":"An eave refers to an extension attached to the building roof to protect the interior space from direct solar radiation and improve the performance on cross ventilation. In this study, the impact of eave inclination angle and roof pitch of an isolated sawtooth roof building on cross ventilation were investigated. The eave configurations at either windward or leeward openings were included. 3D steady Reynolds-Averaged Navier-Stokes (RANS) equation in combination with the Shear-Stress Transport model (SST k-ω model) was used for the Computational Fluid Dynamics (CFD) simulations. Grid sensitivity study was carried out and the performance of cross ventilation was evaluated based on the non-dimensional velocity magnitude, spatial distribution of pressure coefficient as well as the ventilation rate of the building. For the simulation model with 55° roof pitch, it is observed that a region with high velocity magnitude formed on top of the leeward eave due to the higher roof pitch and presence of the leeward eave. Results also indicated that the building model with 90° leeward eave and 55° roof pitch has the highest increment in ventilation rate which is 7.16%. On the other hand, the building model with 90° windward eave has the highest pressure coefficient because more blockage of airflow is caused by a steeper roof as the roof pitch of the building increases. Furthermore, the building model with 90° leeward eave shows a larger region with negative pressure at the leeward façade indicating higher airflow leaving the leeward opening. Therefore, the airflow behavior and characteristic are both dependent on the roof pitch and eave inclination angle for a naturally ventilated building.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.17.2.2023.6.0750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An eave refers to an extension attached to the building roof to protect the interior space from direct solar radiation and improve the performance on cross ventilation. In this study, the impact of eave inclination angle and roof pitch of an isolated sawtooth roof building on cross ventilation were investigated. The eave configurations at either windward or leeward openings were included. 3D steady Reynolds-Averaged Navier-Stokes (RANS) equation in combination with the Shear-Stress Transport model (SST k-ω model) was used for the Computational Fluid Dynamics (CFD) simulations. Grid sensitivity study was carried out and the performance of cross ventilation was evaluated based on the non-dimensional velocity magnitude, spatial distribution of pressure coefficient as well as the ventilation rate of the building. For the simulation model with 55° roof pitch, it is observed that a region with high velocity magnitude formed on top of the leeward eave due to the higher roof pitch and presence of the leeward eave. Results also indicated that the building model with 90° leeward eave and 55° roof pitch has the highest increment in ventilation rate which is 7.16%. On the other hand, the building model with 90° windward eave has the highest pressure coefficient because more blockage of airflow is caused by a steeper roof as the roof pitch of the building increases. Furthermore, the building model with 90° leeward eave shows a larger region with negative pressure at the leeward façade indicating higher airflow leaving the leeward opening. Therefore, the airflow behavior and characteristic are both dependent on the roof pitch and eave inclination angle for a naturally ventilated building.
期刊介绍:
The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.