Characterizing the Increase of the Residual Order under Blowup in Positive Characteristic

IF 1.1 2区 数学 Q1 MATHEMATICS
H. Hauser, Stefan Perlega
{"title":"Characterizing the Increase of the Residual Order under Blowup in Positive Characteristic","authors":"H. Hauser, Stefan Perlega","doi":"10.4171/prims/55-4-7","DOIUrl":null,"url":null,"abstract":"In characteristic zero, the residual order constitutes, after the local multiplicity, the second key invariant for the resolution of singularities. It is defined as the order of the coefficient ideal in a local hypersurface of maximal contact, minus the exceptional multiplicities. It does not increase under blowup in permissible centers as long as the local multiplicity remains constant. In positive characteristic, however, the residual order (defined now as the maximum over all smooth local hypersurfaces) may increase under blowup. In the article we analyze in detail the circumstances when this happens. This may help to develop a modification of the residual order which does work in positive characteristic.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/prims/55-4-7","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/prims/55-4-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

In characteristic zero, the residual order constitutes, after the local multiplicity, the second key invariant for the resolution of singularities. It is defined as the order of the coefficient ideal in a local hypersurface of maximal contact, minus the exceptional multiplicities. It does not increase under blowup in permissible centers as long as the local multiplicity remains constant. In positive characteristic, however, the residual order (defined now as the maximum over all smooth local hypersurfaces) may increase under blowup. In the article we analyze in detail the circumstances when this happens. This may help to develop a modification of the residual order which does work in positive characteristic.
正特性爆破下残差阶增加的表征
在特征零点处,残差阶在局部多重性之后构成奇异解的第二关键不变量。它被定义为局部最大接触超曲面上的理想系数的阶数,减去异常多重数。只要局部多重性保持不变,它在允许的中心爆炸下不会增加。然而,在正特征中,残差阶数(现在定义为所有光滑局部超表面上的最大值)在爆破下可能增加。在本文中,我们将详细分析发生这种情况时的情况。这可能有助于发展一种对剩余顺序的修正,这种修正在正特性中起作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信