Stable Big Bang formation for Einstein’s equations: The complete sub-critical regime

IF 3.5 1区 数学 Q1 MATHEMATICS
G. Fournodavlos, I. Rodnianski, Jared Speck
{"title":"Stable Big Bang formation for Einstein’s equations: The complete sub-critical regime","authors":"G. Fournodavlos, I. Rodnianski, Jared Speck","doi":"10.1090/jams/1015","DOIUrl":null,"url":null,"abstract":"<p>For <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis t comma x right-parenthesis element-of left-parenthesis 0 comma normal infinity right-parenthesis times double-struck upper T Superscript German upper D\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">D</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(t,x) \\in (0,\\infty )\\times \\mathbb {T}^{\\mathfrak {D}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the generalized Kasner solutions (which we refer to as Kasner solutions for short) are a family of explicit solutions to various Einstein-matter systems that, exceptional cases aside, start out smooth but then develop a Big Bang singularity as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t down-arrow 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">↓<!-- ↓ --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">t \\downarrow 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, i.e., a singularity along an entire spacelike hypersurface, where various curvature scalars blow up monotonically. The family is parameterized by the Kasner exponents <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q overTilde Subscript 1 Baseline comma midline-horizontal-ellipsis comma q overTilde Subscript German upper D Baseline element-of double-struck upper R\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>q</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mo>⋯<!-- ⋯ --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>q</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">D</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\widetilde {q}_1,\\cdots ,\\widetilde {q}_{\\mathfrak {D}} \\in \\mathbb {R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, which satisfy two algebraic constraints. There are heuristics in the mathematical physics literature, going back more than 50 years, suggesting that the Big Bang formation should be dynamically stable, that is, stable under perturbations of the Kasner initial data, given say at <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-brace t equals 1 right-brace\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lbrace t = 1 \\rbrace</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, as long as the exponents are “sub-critical” in the following sense: <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"max Underscript StartLayout 1st Row upper I comma upper J comma upper B equals 1 comma midline-horizontal-ellipsis comma German upper D 2nd Row upper I greater-than upper J EndLayout Endscripts left-brace q overTilde Subscript upper I Baseline plus q overTilde Subscript upper J Baseline minus q overTilde Subscript upper B Baseline right-brace greater-than 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:munder>\n <mml:mo form=\"prefix\">max</mml:mo>\n <mml:mstyle scriptlevel=\"1\">\n <mml:mtable rowspacing=\"0.1em\" columnspacing=\"0em\" displaystyle=\"false\">\n <mml:mtr>\n <mml:mtd>\n <mml:mi>I</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>J</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>B</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mo>⋯<!-- ⋯ --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">D</mml:mi>\n </mml:mrow>\n </mml:mtd>\n </mml:mtr>\n <mml:mtr>\n <mml:mtd>\n <mml:mi>I</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>J</mml:mi>\n </mml:mtd>\n </mml:mtr>\n </mml:mtable>\n </mml:mstyle>\n </mml:munder>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>q</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mi>I</mml:mi>\n </mml:msub>\n <mml:mo>+</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>q</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mi>J</mml:mi>\n </mml:msub>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>q</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mi>B</mml:mi>\n </mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n <mml:mo>></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\underset {\\substack {I,J,B=1,\\cdots , \\mathfrak {D}\\\\ I > J}}{\\max } \\{\\widetilde {q}_I+\\widetilde {q}_J-\\widetilde {q}_B\\}>1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Previous works have rigorously shown the dynamic stability of the Kasner Big Bang singularity under stronger assumptions: (1) the Einstein-scalar field system with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German upper D equals 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">D</mml:mi>\n </mml:mrow>\n <mml:mo>=</mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {D}= 3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q overTilde Subscript 1 Baseline almost-equals q overTilde Subscript 2 Baseline almost-equals q overTilde Subscript 3 Baseline almost-equals 1 slash 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>q</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>≈<!-- ≈ --></mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>q</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>≈<!-- ≈ --></mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>q</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msub>\n <mml:mo>≈<!-- ≈ --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\widetilde {q}_1 \\approx \\widetilde {q}_2 \\approx \\widetilde {q}_3 \\approx 1/3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, which corresponds to the stability of the Friedmann–Lemaître–Robertson–Walker solution’s Big Bang or (2) the Einstein-vacuum equations for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German upper D greater-than-or-equal-to 38\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">D</mml:mi>\n </mml:mrow>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>38</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {D}\\geq 38</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"max Underscript upper I equals 1 comma","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/1015","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

Abstract

For ( t , x ) ( 0 , ) × T D (t,x) \in (0,\infty )\times \mathbb {T}^{\mathfrak {D}} , the generalized Kasner solutions (which we refer to as Kasner solutions for short) are a family of explicit solutions to various Einstein-matter systems that, exceptional cases aside, start out smooth but then develop a Big Bang singularity as t 0 t \downarrow 0 , i.e., a singularity along an entire spacelike hypersurface, where various curvature scalars blow up monotonically. The family is parameterized by the Kasner exponents q ~ 1 , , q ~ D R \widetilde {q}_1,\cdots ,\widetilde {q}_{\mathfrak {D}} \in \mathbb {R} , which satisfy two algebraic constraints. There are heuristics in the mathematical physics literature, going back more than 50 years, suggesting that the Big Bang formation should be dynamically stable, that is, stable under perturbations of the Kasner initial data, given say at { t = 1 } \lbrace t = 1 \rbrace , as long as the exponents are “sub-critical” in the following sense: max I , J , B = 1 , , D I > J { q ~ I + q ~ J q ~ B } > 1 \underset {\substack {I,J,B=1,\cdots , \mathfrak {D}\\ I > J}}{\max } \{\widetilde {q}_I+\widetilde {q}_J-\widetilde {q}_B\}>1 . Previous works have rigorously shown the dynamic stability of the Kasner Big Bang singularity under stronger assumptions: (1) the Einstein-scalar field system with D = 3 \mathfrak {D}= 3 and q ~ 1 q ~ 2 q ~ 3 1 / 3 \widetilde {q}_1 \approx \widetilde {q}_2 \approx \widetilde {q}_3 \approx 1/3 , which corresponds to the stability of the Friedmann–Lemaître–Robertson–Walker solution’s Big Bang or (2) the Einstein-vacuum equations for D 38 \mathfrak {D}\geq 38 with

分享
查看原文 本刊更多论文
爱因斯坦方程的稳定大爆炸形成:完整的亚临界状态
对于(t,x)∈(0,∞)×TD(t,x)\in(0,\infty)\times\mathbb{t}^{\mathfrak{D}},广义的卡斯纳解(简称为卡斯纳解)是各种爱因斯坦物质系统的一组显式解,除特殊情况外,这些系统一开始是光滑的,但后来发展出一个大爆炸奇点,即t↓ 0 t\向下箭头0,即,沿着整个类空间超曲面的奇点,其中各种曲率标量单调膨胀。该族由Kasner指数q~1,…,q~D∈R\widetilde参数化{q}_1,\cdots,\宽波浪号{q}_{\mathfrak{D}}\in\mathbb{R},满足两个代数约束。数学物理文献中有一些启发式方法,可以追溯到50多年前,表明大爆炸的形成应该是动态稳定的,也就是说,在卡斯纳初始数据的扰动下是稳定的,比如在{t=1}\lbrace t=1\rbrace,只要指数在以下意义上是“亚临界”的:max I,J,B=1,D I>J{q~I+q~J−q~B}>1\底部{\substack{I,J,B=1,\cdots,\mathfrak{D}\\I>J}}{\max}{q}_I+\宽波浪号{q}_J-\宽波浪号{q}_B\}>1。先前的工作已经严格地证明了在更强的假设下Kasner大爆炸奇点的动力学稳定性:(1)具有D=3\mathfrak{D}=3和q~1≈q~的爱因斯坦标量场系统2≈q-3≈1/3\宽波浪号{q}_1\大约\宽波浪号{q}_2\大约\宽波浪号{q}_3大约1/3,这对应于Friedmann–Lemaître–Robertson–Walker解的大爆炸的稳定性,或者(2)D≥38\mathfrak{D}\geq 38的爱因斯坦真空方程,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信