Ugur Karban, Eduardo Martini, Peter Jordan, Guillaume A. Brès, Aaron Towne
{"title":"Solutions to aliasing in time-resolved flow data","authors":"Ugur Karban, Eduardo Martini, Peter Jordan, Guillaume A. Brès, Aaron Towne","doi":"10.1007/s00162-022-00630-1","DOIUrl":null,"url":null,"abstract":"<p>Avoiding aliasing in time-resolved flow data obtained through high-fidelity simulations while keeping the computational and storage costs at acceptable levels is often a challenge. Well-established solutions such as increasing the sampling rate or low-pass filtering to reduce aliasing can be prohibitively expensive for large datasets. This paper provides a set of alternative strategies for identifying and mitigating aliasing that are applicable even to large datasets. We show how time-derivative data, which can be obtained directly from the governing equations, can be used to detect aliasing and to turn the ill-posed problem of removing aliasing from data into a well-posed problem, yielding a prediction of the true spectrum. Similarly, we show how spatial filtering can be used to remove aliasing for convective systems. We also propose strategies to prevent aliasing when generating a database, including a method tailored for computing nonlinear forcing terms that arise within the resolvent framework. These methods are demonstrated using a nonlinear Ginzburg–Landau model and large-eddy simulation data for a subsonic turbulent jet.</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"36 6","pages":"887 - 914"},"PeriodicalIF":2.2000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00162-022-00630-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 3
Abstract
Avoiding aliasing in time-resolved flow data obtained through high-fidelity simulations while keeping the computational and storage costs at acceptable levels is often a challenge. Well-established solutions such as increasing the sampling rate or low-pass filtering to reduce aliasing can be prohibitively expensive for large datasets. This paper provides a set of alternative strategies for identifying and mitigating aliasing that are applicable even to large datasets. We show how time-derivative data, which can be obtained directly from the governing equations, can be used to detect aliasing and to turn the ill-posed problem of removing aliasing from data into a well-posed problem, yielding a prediction of the true spectrum. Similarly, we show how spatial filtering can be used to remove aliasing for convective systems. We also propose strategies to prevent aliasing when generating a database, including a method tailored for computing nonlinear forcing terms that arise within the resolvent framework. These methods are demonstrated using a nonlinear Ginzburg–Landau model and large-eddy simulation data for a subsonic turbulent jet.
期刊介绍:
Theoretical and Computational Fluid Dynamics provides a forum for the cross fertilization of ideas, tools and techniques across all disciplines in which fluid flow plays a role. The focus is on aspects of fluid dynamics where theory and computation are used to provide insights and data upon which solid physical understanding is revealed. We seek research papers, invited review articles, brief communications, letters and comments addressing flow phenomena of relevance to aeronautical, geophysical, environmental, material, mechanical and life sciences. Papers of a purely algorithmic, experimental or engineering application nature, and papers without significant new physical insights, are outside the scope of this journal. For computational work, authors are responsible for ensuring that any artifacts of discretization and/or implementation are sufficiently controlled such that the numerical results unambiguously support the conclusions drawn. Where appropriate, and to the extent possible, such papers should either include or reference supporting documentation in the form of verification and validation studies.