Modification of Cassava Starch With Combination of Steaming and Acid Hydrolysis and Use as Encapsulant in Nanoencapsulation of Cocoa Leaf Crude Extract (Theobroma cacao L)

Ratih Kumala Dewi, Supriyanto Supiyanto, Y. Pranoto, A. Murdiati
{"title":"Modification of Cassava Starch With Combination of Steaming and Acid Hydrolysis and Use as Encapsulant in Nanoencapsulation of Cocoa Leaf Crude Extract (Theobroma cacao L)","authors":"Ratih Kumala Dewi, Supriyanto Supiyanto, Y. Pranoto, A. Murdiati","doi":"10.22146/ifnp.71070","DOIUrl":null,"url":null,"abstract":"The utilization of native cassava starch in the food industry is limited. It needs a modified process to increase its utilization. This study aimed to evaluate the effect of a combination of steaming and acid hydrolysis and determine the best temperature and hydrolysis time that is suitable to apply as an encapsulant in the nanoencapsulation process of cocoa leaf crude extract. Modification of cassava starch used 50 ℃, 60 ℃, and 70 ℃ temperatures for 30, 60, and 90 minutes with HCl pH 1. The result showed that modified cassava starch produced from a combination of steaming and acid hydrolysis at 70℃ for 30 minutes has the best specifications with 60.48% solubility, 12.38% hygroscopicity, pasting profile (PV=48; BV=3; FV=66; SV=21). Then, it is combined with Arabic gum and used in the nanoencapsulation process using spray drying. This study showed that encapsulation can protect phenolic compounds of cocoa leaf crude extract resulting brownish-red color surrounded by a black circle. Nanocapsule powder has 13.56% moisture content, 350.3 nm particle size, 16.93 zeta potential, and 84.30% encapsulation efficiency. The combination of steaming and acid hydrolysis at 70 ℃ for 30 minutes produces modified cassava starch which is suitable for use as an encapsulant in the nanoencapsulation process of crude extract of cocoa leaves.","PeriodicalId":13468,"journal":{"name":"Indonesian Food and Nutrition Progress","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Food and Nutrition Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ifnp.71070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of native cassava starch in the food industry is limited. It needs a modified process to increase its utilization. This study aimed to evaluate the effect of a combination of steaming and acid hydrolysis and determine the best temperature and hydrolysis time that is suitable to apply as an encapsulant in the nanoencapsulation process of cocoa leaf crude extract. Modification of cassava starch used 50 ℃, 60 ℃, and 70 ℃ temperatures for 30, 60, and 90 minutes with HCl pH 1. The result showed that modified cassava starch produced from a combination of steaming and acid hydrolysis at 70℃ for 30 minutes has the best specifications with 60.48% solubility, 12.38% hygroscopicity, pasting profile (PV=48; BV=3; FV=66; SV=21). Then, it is combined with Arabic gum and used in the nanoencapsulation process using spray drying. This study showed that encapsulation can protect phenolic compounds of cocoa leaf crude extract resulting brownish-red color surrounded by a black circle. Nanocapsule powder has 13.56% moisture content, 350.3 nm particle size, 16.93 zeta potential, and 84.30% encapsulation efficiency. The combination of steaming and acid hydrolysis at 70 ℃ for 30 minutes produces modified cassava starch which is suitable for use as an encapsulant in the nanoencapsulation process of crude extract of cocoa leaves.
蒸煮与酸水解相结合对木薯淀粉的改性及其在可可叶粗提物纳米包封中的应用
本地木薯淀粉在食品工业中的利用是有限的。它需要一个改进的过程来提高利用率。本研究旨在评估蒸汽和酸水解相结合的效果,并确定适合用作可可叶粗提取物纳米包封工艺中包封剂的最佳温度和水解时间。木薯淀粉的改性采用50℃、60℃和70℃的温度,用pH1的HCl分别改性30、60和90分钟。结果表明,经70℃蒸煮和酸水解30min制备的改性木薯淀粉具有最佳的工艺条件,其溶解度为60.48%,吸湿性为12.38%,糊化特性(PV=48;BV=3;FV=66;SV=21)。然后,将其与阿拉伯树胶结合,并在喷雾干燥的纳米封装工艺中使用。本研究表明,包封可以保护可可叶粗提取物中的酚类化合物,使其呈棕红色,周围有一个黑色圆圈。纳米胶囊粉末的水分含量为13.56%,粒径为350.3nm,ζ电位为16.93,包封率为84.30%。将70℃蒸煮和酸水解相结合30分钟制备出改性木薯淀粉,该淀粉适用于可可叶粗提取物的纳米包封工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
8
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信