On the extremum dissipation for steady state incompressible flow past a sphere at low Reynolds number

IF 1.6 4区 工程技术 Q3 Chemical Engineering
R. Arya, Devyani Thapliyal, A. Thakur, Rahul Kumar, G. Verros
{"title":"On the extremum dissipation for steady state incompressible flow past a sphere at low Reynolds number","authors":"R. Arya, Devyani Thapliyal, A. Thakur, Rahul Kumar, G. Verros","doi":"10.1515/ijcre-2023-0033","DOIUrl":null,"url":null,"abstract":"Abstract A methodology based on sound non-equilibrium thermodynamics principles is developed to estimate the extremum dissipation point for steady-state incompressible flow past a sphere at low Reynolds numbers. It is shown, that the extremum dissipation point appears at the point when both the shear stress and the pressure at the surface of the sphere are equal to zero. The Reynolds number and the position of the extremum dissipation flow past a sphere were further estimated with the aid of a mathematical model for pressure distribution on the sphere surface, accounting for both creeping and ideal flow. The parameters of the model were determined by comparison of the calculated pressure distribution at the surface with the available literature data. The conditions at which the separation angle and the extremum dissipation angle coincide were also investigated. It is believed that this work could be used to further elucidate the flow past a sphere.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2023-0033","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A methodology based on sound non-equilibrium thermodynamics principles is developed to estimate the extremum dissipation point for steady-state incompressible flow past a sphere at low Reynolds numbers. It is shown, that the extremum dissipation point appears at the point when both the shear stress and the pressure at the surface of the sphere are equal to zero. The Reynolds number and the position of the extremum dissipation flow past a sphere were further estimated with the aid of a mathematical model for pressure distribution on the sphere surface, accounting for both creeping and ideal flow. The parameters of the model were determined by comparison of the calculated pressure distribution at the surface with the available literature data. The conditions at which the separation angle and the extremum dissipation angle coincide were also investigated. It is believed that this work could be used to further elucidate the flow past a sphere.
低雷诺数下稳态不可压缩流过球的极限耗散
摘要基于健全的非平衡热力学原理,提出了一种在低雷诺数下通过球体的稳态不可压缩流的极值耗散点估计方法。结果表明,当球表面的剪切应力和压力均为零时,出现极值耗散点。借助于球面上压力分布的数学模型,进一步估计了经过球体的雷诺数和极值耗散流的位置,同时考虑了爬行流和理想流。通过将计算的表面压力分布与现有文献数据进行比较来确定模型的参数。还研究了分离角和极值耗散角重合的条件。据信,这项工作可以用来进一步阐明通过球体的流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信