Explainable and secure artificial intelligence: taxonomy, cases of study, learned lessons, challenges and future directions

IF 4.4 4区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Khalid A. Eldrandaly, Mohamed Abdel-Basset, Mahmoud Ibrahim, Nabil M. Abdel-Aziz
{"title":"Explainable and secure artificial intelligence: taxonomy, cases of study, learned lessons, challenges and future directions","authors":"Khalid A. Eldrandaly, Mohamed Abdel-Basset, Mahmoud Ibrahim, Nabil M. Abdel-Aziz","doi":"10.1080/17517575.2022.2098537","DOIUrl":null,"url":null,"abstract":"ABSTRACT Explainable artificial intelligence (XAI) is an evolving discipline that mainly emphasises unboxing in these Black-Boxes. This study provides in-depth review of XAI literature together with a new taxonomy of categorising XAI methods. Moreover, the security of Deep learning (DL) against different attacks turned to be a critical concern for both industry and academia. This study presents a taxonomic overview of the attacks on DL solutions and methods for securing DL against these attacks. Experiments are performed to evaluate and analyse the cutting-edge methods for explaining and securing DL models on real-world case studies of Twitter sentimental analysis using state-of-the-art DL models.","PeriodicalId":11750,"journal":{"name":"Enterprise Information Systems","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enterprise Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/17517575.2022.2098537","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT Explainable artificial intelligence (XAI) is an evolving discipline that mainly emphasises unboxing in these Black-Boxes. This study provides in-depth review of XAI literature together with a new taxonomy of categorising XAI methods. Moreover, the security of Deep learning (DL) against different attacks turned to be a critical concern for both industry and academia. This study presents a taxonomic overview of the attacks on DL solutions and methods for securing DL against these attacks. Experiments are performed to evaluate and analyse the cutting-edge methods for explaining and securing DL models on real-world case studies of Twitter sentimental analysis using state-of-the-art DL models.
可解释和安全的人工智能:分类法、研究案例、经验教训、挑战和未来方向
可解释人工智能(XAI)是一门不断发展的学科,主要强调在这些黑盒中打开盒子。本研究对XAI文献进行了深入的综述,并对XAI方法进行了新的分类。此外,深度学习(DL)抵御各种攻击的安全性已成为工业界和学术界关注的关键问题。本研究对DL解决方案的攻击进行了分类概述,并提出了保护DL免受这些攻击的方法。进行实验以评估和分析用于解释和保护使用最先进的深度学习模型的Twitter情感分析的真实案例研究中的深度学习模型的前沿方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Enterprise Information Systems
Enterprise Information Systems 工程技术-计算机:信息系统
CiteScore
11.00
自引率
6.80%
发文量
24
审稿时长
6 months
期刊介绍: Enterprise Information Systems (EIS) focusses on both the technical and applications aspects of EIS technology, and the complex and cross-disciplinary problems of enterprise integration that arise in integrating extended enterprises in a contemporary global supply chain environment. Techniques developed in mathematical science, computer science, manufacturing engineering, and operations management used in the design or operation of EIS will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信