Crayfish shell waste as safe biosorbent for removal of Cu2+ and Pb2+ from synthetic wastewater

IF 1.2 4区 化学 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Wanyue Hu, Shuo Chen, Hong Jiang
{"title":"Crayfish shell waste as safe biosorbent for removal of Cu2+ and Pb2+ from synthetic wastewater","authors":"Wanyue Hu, Shuo Chen, Hong Jiang","doi":"10.1063/1674-0068/cjcp2001011","DOIUrl":null,"url":null,"abstract":"Crayfish shell is an abundant natural waste and is also a potential biosorbent for pollutants, especially, heavy metals. In this study, the safety of the use of crayfish shell as a biosorbent was first assessed by release experiments involving primary heavy metal ions, such as Cu2+, Zn2+, and Cr3+, in aqueous solution under different environmental conditions. The release concentrations of heavy metals were dependent on pH, ionic strength, and humic acid; and the maximum release concentrations of heavy metals were still lower than the national standard. Specifically, Cu2+ and Pb2+ removal by crayfish shell in synthetic wastewater was investigated. The removal process involved biosorption, precipitation, and complexation, and the results indicate that crayfish shell is an excellent biosorbent for Cu2+ and Pb2+ removal. The precipitation step is particularly dependent on Ca species, pH, and temperature. The maximum removal capacities of Pb2+ and Cu2+ were 676.20 and 119.98 mg/g, respectively. The related precipitates and the generated complex products include Cu2CO3(OH)2, Ca2CuO3, CuCO3, Pb2CO3(OH)2, CaPb3O4, and PbCO3.","PeriodicalId":10036,"journal":{"name":"Chinese Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/1674-0068/cjcp2001011","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Crayfish shell is an abundant natural waste and is also a potential biosorbent for pollutants, especially, heavy metals. In this study, the safety of the use of crayfish shell as a biosorbent was first assessed by release experiments involving primary heavy metal ions, such as Cu2+, Zn2+, and Cr3+, in aqueous solution under different environmental conditions. The release concentrations of heavy metals were dependent on pH, ionic strength, and humic acid; and the maximum release concentrations of heavy metals were still lower than the national standard. Specifically, Cu2+ and Pb2+ removal by crayfish shell in synthetic wastewater was investigated. The removal process involved biosorption, precipitation, and complexation, and the results indicate that crayfish shell is an excellent biosorbent for Cu2+ and Pb2+ removal. The precipitation step is particularly dependent on Ca species, pH, and temperature. The maximum removal capacities of Pb2+ and Cu2+ were 676.20 and 119.98 mg/g, respectively. The related precipitates and the generated complex products include Cu2CO3(OH)2, Ca2CuO3, CuCO3, Pb2CO3(OH)2, CaPb3O4, and PbCO3.
小龙虾壳废物作为安全的生物吸附剂去除合成废水中的Cu2+和Pb2+
小龙虾壳是一种丰富的天然废物,也是一种潜在的污染物,特别是重金属的生物吸附剂。本研究首先通过不同环境条件下对水溶液中cu +、Zn2+、Cr3+等主要重金属离子的释放实验,评价了小龙虾壳作为生物吸附剂的安全性。重金属释放浓度与pH、离子强度和腐植酸有关;重金属的最大释放浓度仍低于国家标准。研究了小龙虾壳对合成废水中Cu2+和Pb2+的去除效果。实验结果表明,螯虾壳是一种去除Cu2+和Pb2+的良好生物吸附剂。沉淀步骤特别依赖于Ca的种类、pH值和温度。对Pb2+和Cu2+的最大去除率分别为676.20和119.98 mg/g。相应的沉淀和生成的络合产物包括Cu2CO3(OH)2、Ca2CuO3、CuCO3、Pb2CO3(OH)2、CaPb3O4和PbCO3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Chemical Physics
Chinese Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
1.90
自引率
10.00%
发文量
2763
审稿时长
3 months
期刊介绍: Chinese Journal of Chemical Physics (CJCP) aims to bridge atomic and molecular level research in broad scope for disciplines in chemistry, physics, material science and life sciences, including the following: Theoretical Methods, Algorithms, Statistical and Quantum Chemistry Gas Phase Dynamics and Structure: Spectroscopy, Molecular Interactions, Scattering, Photochemistry Condensed Phase Dynamics, Structure, and Thermodynamics: Spectroscopy, Reactions, and Relaxation Processes Surfaces, Interfaces, Single Molecules, Materials and Nanosciences Polymers, Biopolymers, and Complex Systems Other related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信