The Robustness of Conditional Logit for Binary Response Panel Data Models with Serial Correlation

Q3 Mathematics
D. Kwak, Robert S. Martin, J. Wooldridge
{"title":"The Robustness of Conditional Logit for Binary Response Panel Data Models with Serial Correlation","authors":"D. Kwak, Robert S. Martin, J. Wooldridge","doi":"10.1515/jem-2021-0005","DOIUrl":null,"url":null,"abstract":"Abstract We examine the conditional logit estimator for binary panel data models with unobserved heterogeneity. A key assumption used to derive the conditional logit estimator is conditional serial independence (CI), which is problematic when the underlying innovations are serially correlated. A Monte Carlo experiment suggests that the conditional logit estimator is not robust to violation of the CI assumption. We find that higher persistence and smaller time dimension both increase the magnitude of the bias in slope parameter estimates. We also compare conditional logit to unconditional logit, bias corrected unconditional logit, and pooled correlated random effects logit.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"12 1","pages":"33 - 56"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2021-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract We examine the conditional logit estimator for binary panel data models with unobserved heterogeneity. A key assumption used to derive the conditional logit estimator is conditional serial independence (CI), which is problematic when the underlying innovations are serially correlated. A Monte Carlo experiment suggests that the conditional logit estimator is not robust to violation of the CI assumption. We find that higher persistence and smaller time dimension both increase the magnitude of the bias in slope parameter estimates. We also compare conditional logit to unconditional logit, bias corrected unconditional logit, and pooled correlated random effects logit.
具有序列相关性的二元响应面板数据模型的条件Logit的鲁棒性
摘要研究了具有未观测异质性的二元面板数据模型的条件logit估计量。用于导出条件logit估计量的一个关键假设是条件序列独立性(CI),当底层创新是序列相关时,这是有问题的。蒙特卡罗实验表明,条件logit估计器对CI假设的违反不具有鲁棒性。我们发现,较高的持续时间和较小的时间维度都增加了坡度参数估计的偏差幅度。我们还比较了条件logit与无条件logit,偏差校正无条件logit,并汇集了相关随机效应logit。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信