Characteristics of biochar produced from yak manure at different pyrolysis temperatures and its effects on the yield and growth of highland barley

Q3 Chemical Engineering
Jiang-hong Zhang, Bing Huang, Liang Chen, Yang Li, Wei Li, Zhuanxi Luo
{"title":"Characteristics of biochar produced from yak manure at different pyrolysis temperatures and its effects on the yield and growth of highland barley","authors":"Jiang-hong Zhang, Bing Huang, Liang Chen, Yang Li, Wei Li, Zhuanxi Luo","doi":"10.1080/09542299.2018.1487774","DOIUrl":null,"url":null,"abstract":"ABSTRACT The yak manure based biochar was produced at different temperatures of 300, 500 and 700 ℃ held for 3 h, which was characterized by BET surface area, X-ray diffraction, Fourier transform infrared spectroscopy, pH measurement, analysis, scanning electron microscopy and ultimate analysis. The resultant biochar had characteristics of high surface area, high pH, porous structure and rich nutrients such as N, P, Ca, Mg, and K, inferring that the yak manure-derived biochar could be used as a soil conditioner. The field experiment was conducted to study the effect of yak manure derived biochar amendment on the yield and biological traits of highland barley, revealing that adding biochar to soil could increase the yield and growth of highland barley in short-term although the long-term benefits remain to be quantified. The present results can be useful to fill the knowledge gap regarding the potential of yak manure derived biochar to soil improvement.","PeriodicalId":55264,"journal":{"name":"Chemical Speciation and Bioavailability","volume":"30 1","pages":"57 - 67"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09542299.2018.1487774","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Speciation and Bioavailability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09542299.2018.1487774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 39

Abstract

ABSTRACT The yak manure based biochar was produced at different temperatures of 300, 500 and 700 ℃ held for 3 h, which was characterized by BET surface area, X-ray diffraction, Fourier transform infrared spectroscopy, pH measurement, analysis, scanning electron microscopy and ultimate analysis. The resultant biochar had characteristics of high surface area, high pH, porous structure and rich nutrients such as N, P, Ca, Mg, and K, inferring that the yak manure-derived biochar could be used as a soil conditioner. The field experiment was conducted to study the effect of yak manure derived biochar amendment on the yield and biological traits of highland barley, revealing that adding biochar to soil could increase the yield and growth of highland barley in short-term although the long-term benefits remain to be quantified. The present results can be useful to fill the knowledge gap regarding the potential of yak manure derived biochar to soil improvement.
牦牛粪不同热解温度下生物炭的特性及其对青稞产量和生长的影响
摘要采用BET比表面积法、X射线衍射法、傅立叶变换红外光谱法、pH值测定法、分析法、扫描电子显微镜法和极限分析法,分别在300、500和700℃的不同温度下保温3h制备了牦牛粪基生物炭。所得生物炭具有高表面积、高pH、多孔结构和丰富的N、P、Ca、Mg和K等营养物质的特性,表明牦牛粪生物炭可作为土壤调理剂。通过田间试验研究了牦牛粪生物炭改良剂对青稞产量和生物学性状的影响,表明在土壤中添加生物炭可以在短期内提高青稞的产量和生长,但长期效益仍有待量化。目前的研究结果有助于填补关于牦牛粪生物炭在土壤改良中潜力的知识空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.62
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: Chemical Speciation & Bioavailability ( CS&B) is a scholarly, peer-reviewed forum for insights on the chemical aspects of occurrence, distribution, transport, transformation, transfer, fate, and effects of substances in the environment and biota, and their impacts on the uptake of the substances by living organisms. Substances of interests include both beneficial and toxic ones, especially nutrients, heavy metals, persistent organic pollutants, and emerging contaminants, such as engineered nanomaterials, as well as pharmaceuticals and personal-care products as pollutants. It is the aim of this Journal to develop an international community of experienced colleagues to promote the research, discussion, review, and spread of information on chemical speciation and bioavailability, which is a topic of interest to researchers in many disciplines, including environmental, chemical, biological, food, medical, toxicology, and health sciences. Key themes in the scope of the Journal include, but are not limited to, the following “6Ms”: Methods for speciation analysis and the evaluation of bioavailability, especially the development, validation, and application of novel methods and techniques. Media that sustain the processes of release, distribution, transformation, and transfer of chemical speciation; of particular interest are emerging contaminants, such as engineered nanomaterials, pharmaceuticals, and personal-care products. Mobility of substance species in environment and biota, either spatially or temporally. Matters that influence the chemical speciation and bioavailability, mainly environmentally relevant conditions. Mechanisms that govern the transport, transformation, transfer, and fate of chemical speciation in the environment, and the biouptake of substances. Models for the simulation of chemical speciation and bioavailability, and for the prediction of toxicity. Chemical Speciation & Bioavailability is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read, anywhere, at any time. immediately on publication. There are no charges for submission to this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信