DOMINATION NUMBER IN THE ANNIHILATING-SUBMODULE GRAPH OF MODULES OVER COMMUTATIVE RINGS

IF 0.5 Q3 MATHEMATICS
H. Ansari-Toroghy, S. Habibi
{"title":"DOMINATION NUMBER IN THE ANNIHILATING-SUBMODULE GRAPH OF MODULES OVER COMMUTATIVE RINGS","authors":"H. Ansari-Toroghy, S. Habibi","doi":"10.24330/IEJA.969902","DOIUrl":null,"url":null,"abstract":"Let $M$ be a module over a commutative ring $R$. The annihilating-submodule graph of $M$, denoted by $AG(M)$, is a simple graph in which a non-zero submodule $N$ of $M$ is a vertex if and only if there exists a non-zero proper submodule $K$ of $M$ such that $NK=(0)$, where $NK$, the product of $N$ and $K$, is denoted by $(N:M)(K:M)M$ and two distinct vertices $N$ and $K$ are adjacent if and only if $NK=(0)$. This graph is a submodule version of the annihilating-ideal graph and under some conditions, is isomorphic with an induced subgraph of the Zariski topology-graph $G(\\tau_T)$ which was introduced in (The Zariski topology-graph of modules over commutative rings, Comm. Algebra., 42 (2014), 3283--3296). In this paper, we study the domination number of $AG(M)$ and some connections between the graph-theoretic properties of $AG(M)$ and algebraic properties of module $M$.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/IEJA.969902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let $M$ be a module over a commutative ring $R$. The annihilating-submodule graph of $M$, denoted by $AG(M)$, is a simple graph in which a non-zero submodule $N$ of $M$ is a vertex if and only if there exists a non-zero proper submodule $K$ of $M$ such that $NK=(0)$, where $NK$, the product of $N$ and $K$, is denoted by $(N:M)(K:M)M$ and two distinct vertices $N$ and $K$ are adjacent if and only if $NK=(0)$. This graph is a submodule version of the annihilating-ideal graph and under some conditions, is isomorphic with an induced subgraph of the Zariski topology-graph $G(\tau_T)$ which was introduced in (The Zariski topology-graph of modules over commutative rings, Comm. Algebra., 42 (2014), 3283--3296). In this paper, we study the domination number of $AG(M)$ and some connections between the graph-theoretic properties of $AG(M)$ and algebraic properties of module $M$.
交换环上模的湮灭子模图的控制数
设$M$是交换环$R$上的一个模。$M$的湮灭子模图,用$AG(M)$表示,是一个简单图,其中$M$中的非零子模$N$是一个顶点,当且仅当存在一个$M$非零正规子模$K$,使得$NK=(0)$,其中$N$和$K$的乘积$NK$用$(N:M)(K:M)M$表示,并且两个不同的顶点$N$与$K$相邻当且仅当$NK=。该图是零化理想图的子模版本,在某些条件下,它与Zariski拓扑图$G(\tau_T)$的一个诱导子图同构,该图在(交换环上模的Zariski拓扑图,Comm.Agebra.,42(2014),3283-3296)中引入。本文研究了$AG(M)$的控制数,以及$AG(M)$的图论性质与模$M$的代数性质之间的一些联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信