Reverse Faber-Krahn inequality for a truncated Laplacian operator

Pub Date : 2020-03-26 DOI:10.5565/publmat6622201
E. Parini, J. Rossi, A. Salort
{"title":"Reverse Faber-Krahn inequality for a truncated Laplacian operator","authors":"E. Parini, J. Rossi, A. Salort","doi":"10.5565/publmat6622201","DOIUrl":null,"url":null,"abstract":"In this paper we prove a reverse Faber-Krahn inequality for the principal eigenvalue $\\mu_1(\\Omega)$ of the fully nonlinear eigenvalue problem \\[ \\label{eq} \\left\\{\\begin{array}{r c l l} -\\lambda_N(D^2 u) & = & \\mu u & \\text{in }\\Omega, \\\\ u & = & 0 & \\text{on }\\partial \\Omega. \\end{array}\\right. \\] Here $ \\lambda_N(D^2 u)$ stands for the largest eigenvalue of the Hessian matrix of $u$. More precisely, we prove that, for an open, bounded, convex domain $\\Omega \\subset \\mathbb{R}^N$, the inequality \\[ \\mu_1(\\Omega) \\leq \\frac{\\pi^2}{[\\text{diam}(\\Omega)]^2} = \\mu_1(B_{\\text{diam}(\\Omega)/2}),\\] where $\\text{diam}(\\Omega)$ is the diameter of $\\Omega$, holds true. The inequality actually implies a stronger result, namely, the maximality of the ball under a diameter constraint. \nFurthermore, we discuss the minimization of $\\mu_1(\\Omega)$ under different kinds of constraints.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6622201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we prove a reverse Faber-Krahn inequality for the principal eigenvalue $\mu_1(\Omega)$ of the fully nonlinear eigenvalue problem \[ \label{eq} \left\{\begin{array}{r c l l} -\lambda_N(D^2 u) & = & \mu u & \text{in }\Omega, \\ u & = & 0 & \text{on }\partial \Omega. \end{array}\right. \] Here $ \lambda_N(D^2 u)$ stands for the largest eigenvalue of the Hessian matrix of $u$. More precisely, we prove that, for an open, bounded, convex domain $\Omega \subset \mathbb{R}^N$, the inequality \[ \mu_1(\Omega) \leq \frac{\pi^2}{[\text{diam}(\Omega)]^2} = \mu_1(B_{\text{diam}(\Omega)/2}),\] where $\text{diam}(\Omega)$ is the diameter of $\Omega$, holds true. The inequality actually implies a stronger result, namely, the maximality of the ball under a diameter constraint. Furthermore, we discuss the minimization of $\mu_1(\Omega)$ under different kinds of constraints.
分享
查看原文
截断拉普拉斯算子的反Faber-Krahn不等式
本文证明了完全非线性特征值问题的主特征值$\mu_1(\Omega)$的逆Faber-Krahn不等式。这里$\lambda\N(D^2 u)&=&\mu u&\text{In}\Omega,\\u&=&0&\text{on}\partial\Omega.\end{array}\right。这里$\lambda_N(D^2 u)$代表$u$的Hessian矩阵的最大特征值。更确切地说,我们证明了,对于一个开的、有界的、凸的域$\Omega\subet\mathbb{R}^N$,不等式\[\mu_1(\Omega)\leq\frac{\pi^2}{[\text{diam}(\Ome茄)]^2}=\mu_1(B_{\text{diam}(\ Omega)/2}),\],其中$\text{diam}(\ Ome茄)$是$\Omega$的直径,成立。这个不等式实际上意味着一个更强的结果,即球在直径约束下的最大值。此外,我们还讨论了$\mu_1(\Omega)$在不同约束条件下的最小化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信