{"title":"Erratum to “Navier–Stokes equations in a curved thin domain, Part III: thin-film limit”","authors":"Tatsuya Miura","doi":"10.57262/ade028-0304-341","DOIUrl":null,"url":null,"abstract":"We consider the Navier-Stokes equations with Navier's slip boundary conditions in a three-dimensional curved thin domain around a given closed surface. Under suitable assumptions we show that the average in the thin direction of a strong solution to the bulk Navier-Stokes equations converges weakly in appropriate function spaces on the limit surface as the thickness of the thin domain tends to zero. Moreover, we characterize the limit as a weak solution to limit equations, which are the damped and weighted Navier-Stokes equations on the limit surface. We also prove the strong convergence of the average of a strong solution to the bulk equations towards a weak solution to the limit equations by showing estimates for the difference between them. In some special case our limit equations agree with the Navier-Stokes equations on a Riemannian manifold in which the viscous term contains the Ricci curvature. This is the first result on a rigorous derivation of the surface Navier-Stokes equations on a general closed surface by the thin-film limit.","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2020-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade028-0304-341","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
We consider the Navier-Stokes equations with Navier's slip boundary conditions in a three-dimensional curved thin domain around a given closed surface. Under suitable assumptions we show that the average in the thin direction of a strong solution to the bulk Navier-Stokes equations converges weakly in appropriate function spaces on the limit surface as the thickness of the thin domain tends to zero. Moreover, we characterize the limit as a weak solution to limit equations, which are the damped and weighted Navier-Stokes equations on the limit surface. We also prove the strong convergence of the average of a strong solution to the bulk equations towards a weak solution to the limit equations by showing estimates for the difference between them. In some special case our limit equations agree with the Navier-Stokes equations on a Riemannian manifold in which the viscous term contains the Ricci curvature. This is the first result on a rigorous derivation of the surface Navier-Stokes equations on a general closed surface by the thin-film limit.
期刊介绍:
Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.