Erratum to “Navier–Stokes equations in a curved thin domain, Part III: thin-film limit”

IF 1.5 3区 数学 Q1 MATHEMATICS
Tatsuya Miura
{"title":"Erratum to “Navier–Stokes equations in a curved thin domain, Part III: thin-film limit”","authors":"Tatsuya Miura","doi":"10.57262/ade028-0304-341","DOIUrl":null,"url":null,"abstract":"We consider the Navier-Stokes equations with Navier's slip boundary conditions in a three-dimensional curved thin domain around a given closed surface. Under suitable assumptions we show that the average in the thin direction of a strong solution to the bulk Navier-Stokes equations converges weakly in appropriate function spaces on the limit surface as the thickness of the thin domain tends to zero. Moreover, we characterize the limit as a weak solution to limit equations, which are the damped and weighted Navier-Stokes equations on the limit surface. We also prove the strong convergence of the average of a strong solution to the bulk equations towards a weak solution to the limit equations by showing estimates for the difference between them. In some special case our limit equations agree with the Navier-Stokes equations on a Riemannian manifold in which the viscous term contains the Ricci curvature. This is the first result on a rigorous derivation of the surface Navier-Stokes equations on a general closed surface by the thin-film limit.","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2020-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade028-0304-341","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

We consider the Navier-Stokes equations with Navier's slip boundary conditions in a three-dimensional curved thin domain around a given closed surface. Under suitable assumptions we show that the average in the thin direction of a strong solution to the bulk Navier-Stokes equations converges weakly in appropriate function spaces on the limit surface as the thickness of the thin domain tends to zero. Moreover, we characterize the limit as a weak solution to limit equations, which are the damped and weighted Navier-Stokes equations on the limit surface. We also prove the strong convergence of the average of a strong solution to the bulk equations towards a weak solution to the limit equations by showing estimates for the difference between them. In some special case our limit equations agree with the Navier-Stokes equations on a Riemannian manifold in which the viscous term contains the Ricci curvature. This is the first result on a rigorous derivation of the surface Navier-Stokes equations on a general closed surface by the thin-film limit.
“弯曲薄域中的Navier-Stokes方程,第三部分:薄膜极限”勘误表
在给定的封闭曲面周围的三维弯曲薄域上,考虑具有Navier滑移边界条件的Navier- stokes方程。在适当的假设下,我们证明了当薄域的厚度趋于零时,大块Navier-Stokes方程的强解在薄方向上的平均值在极限表面上的适当函数空间中是弱收敛的。此外,我们将极限描述为极限方程的弱解,即极限表面上的阻尼和加权Navier-Stokes方程。我们还证明了整体方程的强解对极限方程的弱解的平均的强收敛性,给出了它们之间差的估计。在某些特殊情况下,我们的极限方程与黎曼流形上的纳维-斯托克斯方程一致,其中粘性项包含里奇曲率。这是利用薄膜极限对一般封闭表面上的表面Navier-Stokes方程进行严格推导的第一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Differential Equations
Advances in Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信