Graphs with total mutual-visibility number zero and total mutual-visibility in Cartesian products

IF 0.5 4区 数学 Q3 MATHEMATICS
S. Klavžar, Jing Tian
{"title":"Graphs with total mutual-visibility number zero and total mutual-visibility in Cartesian products","authors":"S. Klavžar, Jing Tian","doi":"10.7151/dmgt.2496","DOIUrl":null,"url":null,"abstract":"If $G$ is a graph and $X\\subseteq V(G)$, then $X$ is a total mutual-visibility set if every pair of vertices $x$ and $y$ of $G$ admits a shortest $x,y$-path $P$ with $V(P) \\cap X \\subseteq \\{x,y\\}$. The cardinality of a largest total mutual-visibility set of $G$ is the total mutual-visibility number $\\mu_{\\rm t}(G)$ of $G$. Graphs with $\\mu_{\\rm t}(G) = 0$ are characterized as the graphs in which no vertex is the central vertex of a convex $P_3$. The total mutual-visibility number of Cartesian products is bounded and several exact results proved. For instance, $\\mu_{\\rm t}(K_n\\,\\square\\, K_m) = \\max\\{n,m\\}$ and $\\mu_{\\rm t}(T\\,\\square\\, H) = \\mu_{\\rm t}(T)\\mu_{\\rm t}(H)$, where $T$ is a tree and $H$ an arbitrary graph. It is also demonstrated that $\\mu_{\\rm t}(G\\,\\square\\, H)$ can be arbitrary larger than $\\mu_{\\rm t}(G)\\mu_{\\rm t}(H)$.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2496","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

If $G$ is a graph and $X\subseteq V(G)$, then $X$ is a total mutual-visibility set if every pair of vertices $x$ and $y$ of $G$ admits a shortest $x,y$-path $P$ with $V(P) \cap X \subseteq \{x,y\}$. The cardinality of a largest total mutual-visibility set of $G$ is the total mutual-visibility number $\mu_{\rm t}(G)$ of $G$. Graphs with $\mu_{\rm t}(G) = 0$ are characterized as the graphs in which no vertex is the central vertex of a convex $P_3$. The total mutual-visibility number of Cartesian products is bounded and several exact results proved. For instance, $\mu_{\rm t}(K_n\,\square\, K_m) = \max\{n,m\}$ and $\mu_{\rm t}(T\,\square\, H) = \mu_{\rm t}(T)\mu_{\rm t}(H)$, where $T$ is a tree and $H$ an arbitrary graph. It is also demonstrated that $\mu_{\rm t}(G\,\square\, H)$ can be arbitrary larger than $\mu_{\rm t}(G)\mu_{\rm t}(H)$.
笛卡尔积中全互可见数为零的图和全互可见图
如果$G$是图并且$X\substeqV(G)$,那么$X$是一个全互可见性集,如果$G美元的每对顶点$X$和$y$都允许一个最短的$X,y$路径$P$与$V(P)\cap X\ssubsteq\{X,y\}$。$G$的最大总互可见性集合的基数是$G$中的总互可见性数$\mu_{\rmt}(G)$。具有$\mu_{\rmt}(G)=0$的图被刻画为其中没有顶点是凸$P_3$的中心顶点的图。笛卡儿乘积的总互可见性是有界的,并证明了几个精确的结果。例如,$\mu_{\rm t}(K_n\,\square\,K_m)=\max\{n,m\}$和$\mu_{\rm t}(t\,\square\,H)=\mu_{\rm t}(t)\mu_(\rm t)(H)$,其中$t$是树,$H$是任意图。还证明了$\mu_{\rmt}(G\,\ square \,H)$可以是大于$\mu_{\rmt}(G)\mu_{\rmt}(H)$的任意值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
22
审稿时长
53 weeks
期刊介绍: The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信