Constructing an inventory for fast screening of hydraulic and hydrologic performance of stormwater control measures

IF 2.3 Q3 ENVIRONMENTAL SCIENCES
Sara Maria Lerer, Alexandre Hallkvist Guidje, Karin Margrethe Löf Drenck, Camilla Christiane Jakobsen, K. Arnbjerg-Nielsen, P. Mikkelsen, H. J. Sørup
{"title":"Constructing an inventory for fast screening of hydraulic and hydrologic performance of stormwater control measures","authors":"Sara Maria Lerer, Alexandre Hallkvist Guidje, Karin Margrethe Löf Drenck, Camilla Christiane Jakobsen, K. Arnbjerg-Nielsen, P. Mikkelsen, H. J. Sørup","doi":"10.2166/bgs.2022.018","DOIUrl":null,"url":null,"abstract":"\n Stormwater control measures (SCMs) are effective and sustainable complementary means of managing stormwater in cities. Unlike underground drainage systems, they require space on the city surface, and therefore must be included in initial sketches of urban planning and design. These initial sketches are often made by architects and urban planners, who are usually not trained in hydrology, and therefore require simple and robust tools to inform their initial plans with respect to stormwater management. There may be local guidelines for dimensioning SCMs, but their applicability is often limited with regard to the range of SCMs, and the methodology behind them may be oversimplified, including a lack of assessment of benefits on the urban hydrological cycle. We developed a methodology for estimating multiple performance indicators of a wide range of SCMs and applied it to Danish meteorological conditions. The methodology includes consulting expected end users, configuring an SWMM model for each SCM type and choosing applicable parameter ranges, running multiple simulations for each type covering the parameter space, and post-processing the results using python and PySWMM. The outputs can be used to draw general recommendations regarding effective application ranges for different SCMs, and to quickly assess the performance of case-specific configurations.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blue-Green Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/bgs.2022.018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Stormwater control measures (SCMs) are effective and sustainable complementary means of managing stormwater in cities. Unlike underground drainage systems, they require space on the city surface, and therefore must be included in initial sketches of urban planning and design. These initial sketches are often made by architects and urban planners, who are usually not trained in hydrology, and therefore require simple and robust tools to inform their initial plans with respect to stormwater management. There may be local guidelines for dimensioning SCMs, but their applicability is often limited with regard to the range of SCMs, and the methodology behind them may be oversimplified, including a lack of assessment of benefits on the urban hydrological cycle. We developed a methodology for estimating multiple performance indicators of a wide range of SCMs and applied it to Danish meteorological conditions. The methodology includes consulting expected end users, configuring an SWMM model for each SCM type and choosing applicable parameter ranges, running multiple simulations for each type covering the parameter space, and post-processing the results using python and PySWMM. The outputs can be used to draw general recommendations regarding effective application ranges for different SCMs, and to quickly assess the performance of case-specific configurations.
构建雨水控制措施水力和水文性能快速筛选清单
雨水控制措施(scm)是城市雨水管理的有效和可持续的补充手段。与地下排水系统不同,它们需要城市地表的空间,因此必须包括在城市规划和设计的初始草图中。这些最初的草图通常是由建筑师和城市规划者绘制的,他们通常没有接受过水文学方面的培训,因此需要简单而强大的工具来为他们的初步计划提供有关雨水管理的信息。可能会有一些地方准则来确定可持续发展指标的尺寸,但它们的适用性往往局限于可持续发展指标的范围,其背后的方法可能过于简化,包括缺乏对城市水文循环的效益的评估。我们开发了一种估算多种SCMs性能指标的方法,并将其应用于丹麦的气象条件。该方法包括咨询预期的最终用户,为每种SCM类型配置SWMM模型并选择适用的参数范围,为每种类型运行多个模拟,覆盖参数空间,并使用python和PySWMM对结果进行后处理。输出可用于就不同scm的有效应用范围提出一般建议,并快速评估特定案例配置的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Blue-Green Systems
Blue-Green Systems Multiple-
CiteScore
8.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信