Chemical Contamination of Soil on Urban Territories With Aluminum Production in the Baikal Region, Russia

IF 3.5 Q2 ENVIRONMENTAL SCIENCES
V. Grebenshchikova, M. Kuzmin, V. Rukavishnikov, N. Efimova, I. V. Donskikh, Artemiy A Doroshkov
{"title":"Chemical Contamination of Soil on Urban Territories With Aluminum Production in the Baikal Region, Russia","authors":"V. Grebenshchikova, M. Kuzmin, V. Rukavishnikov, N. Efimova, I. V. Donskikh, Artemiy A Doroshkov","doi":"10.1177/11786221211004114","DOIUrl":null,"url":null,"abstract":"The study was conducted in 2 urbanized areas of the Baikal region of Russia. These are the cities of Shelekhov and Tayshet with their suburbs. Aluminum production has been carried out in Shelekhov for over 60 years and in Tayshet for 5 years. The purpose of the study was to determine the pollution of urban soils with toxic elements—Al, F, Be, Li, as well as Cr, Ni, Pb, and so on under the influence of industrial enterprises (aluminum and cable plants, thermal power plants). Also, the purpose of the research was to determine the effect of increased fluorite (F) in the environment on children’s health. Pure aluminum is used much less frequently than in alloys. The addition of various elements (Be, B, Li, Fe, Si, Mg, Mn, Zr, Ag, Pb, Cu, Ni, and others) increases the hardness, density, thermal conductivity, and other properties of the alloys. The area of high F content in urban soil is 15 times higher than the regional context. The maximum content of Na, Be, and Al is 2 to 4 times higher than the regional background. An increased Li content is marked only near aluminum smelters. The F content in urine samples from children living in areas with long-term pollution exposure (Shelekhov) is 1.5 to 2 times higher than in the group of children with a short exposure period (Tayshet).","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/11786221211004114","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Soil and Water Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11786221211004114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 4

Abstract

The study was conducted in 2 urbanized areas of the Baikal region of Russia. These are the cities of Shelekhov and Tayshet with their suburbs. Aluminum production has been carried out in Shelekhov for over 60 years and in Tayshet for 5 years. The purpose of the study was to determine the pollution of urban soils with toxic elements—Al, F, Be, Li, as well as Cr, Ni, Pb, and so on under the influence of industrial enterprises (aluminum and cable plants, thermal power plants). Also, the purpose of the research was to determine the effect of increased fluorite (F) in the environment on children’s health. Pure aluminum is used much less frequently than in alloys. The addition of various elements (Be, B, Li, Fe, Si, Mg, Mn, Zr, Ag, Pb, Cu, Ni, and others) increases the hardness, density, thermal conductivity, and other properties of the alloys. The area of high F content in urban soil is 15 times higher than the regional context. The maximum content of Na, Be, and Al is 2 to 4 times higher than the regional background. An increased Li content is marked only near aluminum smelters. The F content in urine samples from children living in areas with long-term pollution exposure (Shelekhov) is 1.5 to 2 times higher than in the group of children with a short exposure period (Tayshet).
俄罗斯贝加尔湖地区铝生产对城市土壤的化学污染
这项研究是在俄罗斯贝加尔湖地区的两个城市化地区进行的。这些是舍列霍夫和泰谢特的城市及其郊区。铝生产已经在舍列霍夫进行了60多年,在塔谢特进行了5年。本研究的目的是确定工业企业(铝厂、电缆厂、火电厂)对城市土壤中al、F、Be、Li以及Cr、Ni、Pb等有毒元素的污染情况。此外,这项研究的目的是确定环境中萤石(F)含量增加对儿童健康的影响。纯铝的使用频率远低于合金。各种元素(Be、B、Li、Fe、Si、Mg、Mn、Zr、Ag、Pb、Cu、Ni等)的加入提高了合金的硬度、密度、导热性和其他性能。城市土壤中高氟含量的面积是区域环境的15倍。Na、Be、Al的最大含量是区域背景的2 ~ 4倍。只有在铝冶炼厂附近,锂含量才会增加。生活在长期暴露于污染地区(舍列霍夫)的儿童尿液样本中的氟含量比短时间暴露于污染地区的儿童高出1.5至2倍(taysheet)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Air Soil and Water Research
Air Soil and Water Research ENVIRONMENTAL SCIENCES-
CiteScore
7.80
自引率
5.30%
发文量
27
审稿时长
8 weeks
期刊介绍: Air, Soil & Water Research is an open access, peer reviewed international journal covering all areas of research into soil, air and water. The journal looks at each aspect individually, as well as how they interact, with each other and different components of the environment. This includes properties (including physical, chemical, biochemical and biological), analysis, microbiology, chemicals and pollution, consequences for plants and crops, soil hydrology, changes and consequences of change, social issues, and more. The journal welcomes readerships from all fields, but hopes to be particularly profitable to analytical and water chemists and geologists as well as chemical, environmental, petrochemical, water treatment, geophysics and geological engineers. The journal has a multi-disciplinary approach and includes research, results, theory, models, analysis, applications and reviews. Work in lab or field is applicable. Of particular interest are manuscripts relating to environmental concerns. Other possible topics include, but are not limited to: Properties and analysis covering all areas of research into soil, air and water individually as well as how they interact with each other and different components of the environment Soil hydrology and microbiology Changes and consequences of environmental change, chemicals and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信