Rigidity results for Riemannian twistor spaces under vanishing curvature conditions

IF 0.6 3区 数学 Q3 MATHEMATICS
G. Catino, D. Dameno, P. Mastrolia
{"title":"Rigidity results for Riemannian twistor spaces under vanishing curvature conditions","authors":"G. Catino,&nbsp;D. Dameno,&nbsp;P. Mastrolia","doi":"10.1007/s10455-023-09889-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we provide new rigidity results for four-dimensional Riemannian manifolds and their twistor spaces. In particular, using the moving frame method, we prove that <span>\\(\\mathbb {C}\\mathbb {P}^3\\)</span> is the only twistor space whose Bochner tensor is parallel; moreover, we classify Hermitian Ricci-parallel and locally symmetric twistor spaces and we show the nonexistence of conformally flat twistor spaces. We also generalize a result due to Atiyah, Hitchin and Singer concerning the self-duality of a Riemannian four-manifold.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"63 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09889-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09889-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we provide new rigidity results for four-dimensional Riemannian manifolds and their twistor spaces. In particular, using the moving frame method, we prove that \(\mathbb {C}\mathbb {P}^3\) is the only twistor space whose Bochner tensor is parallel; moreover, we classify Hermitian Ricci-parallel and locally symmetric twistor spaces and we show the nonexistence of conformally flat twistor spaces. We also generalize a result due to Atiyah, Hitchin and Singer concerning the self-duality of a Riemannian four-manifold.

曲率消失条件下黎曼扭转空间的刚度结果
本文给出了四维黎曼流形及其扭曲空间的刚度结果。特别地,使用移动框架方法,我们证明了\(\mathbb{C}\mathbb{P}^3\)是唯一Bochner张量平行的扭曲空间;此外,我们对HermitianRicci平行和局部对称扭曲空间进行了分类,并证明了保形平坦扭曲空间的不存在性。我们还推广了Atiyah、Hitchin和Singer关于黎曼四流形自对偶的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信