Amortized Inference for Heterogeneous Reconstruction in Cryo-EM

A. Levy, Gordon Wetzstein, Julien N. P. Martel, F. Poitevin, Ellen D. Zhong
{"title":"Amortized Inference for Heterogeneous Reconstruction in Cryo-EM","authors":"A. Levy, Gordon Wetzstein, Julien N. P. Martel, F. Poitevin, Ellen D. Zhong","doi":"10.48550/arXiv.2210.07387","DOIUrl":null,"url":null,"abstract":"Cryo-electron microscopy (cryo-EM) is an imaging modality that provides unique insights into the dynamics of proteins and other building blocks of life. The algorithmic challenge of jointly estimating the poses, 3D structure, and conformational heterogeneity of a biomolecule from millions of noisy and randomly oriented 2D projections in a computationally efficient manner, however, remains unsolved. Our method, cryoFIRE, performs ab initio heterogeneous reconstruction with unknown poses in an amortized framework, thereby avoiding the computationally expensive step of pose search while enabling the analysis of conformational heterogeneity. Poses and conformation are jointly estimated by an encoder while a physics-based decoder aggregates the images into an implicit neural representation of the conformational space. We show that our method can provide one order of magnitude speedup on datasets containing millions of images without any loss of accuracy. We validate that the joint estimation of poses and conformations can be amortized over the size of the dataset. For the first time, we prove that an amortized method can extract interpretable dynamic information from experimental datasets.","PeriodicalId":72099,"journal":{"name":"Advances in neural information processing systems","volume":"35 1","pages":"13038-13049"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neural information processing systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.07387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Cryo-electron microscopy (cryo-EM) is an imaging modality that provides unique insights into the dynamics of proteins and other building blocks of life. The algorithmic challenge of jointly estimating the poses, 3D structure, and conformational heterogeneity of a biomolecule from millions of noisy and randomly oriented 2D projections in a computationally efficient manner, however, remains unsolved. Our method, cryoFIRE, performs ab initio heterogeneous reconstruction with unknown poses in an amortized framework, thereby avoiding the computationally expensive step of pose search while enabling the analysis of conformational heterogeneity. Poses and conformation are jointly estimated by an encoder while a physics-based decoder aggregates the images into an implicit neural representation of the conformational space. We show that our method can provide one order of magnitude speedup on datasets containing millions of images without any loss of accuracy. We validate that the joint estimation of poses and conformations can be amortized over the size of the dataset. For the first time, we prove that an amortized method can extract interpretable dynamic information from experimental datasets.
低温EM中非均质重建的分期推理
冷冻电子显微镜(Cryo-EM)是一种成像模式,它为蛋白质和其他生命组成部分的动力学提供了独特的见解。然而,以计算高效的方式从数百万个有噪声和随机定向的2D投影中联合估计生物分子的姿态、3D结构和构象异质性的算法挑战仍未解决。我们的方法cryoFIRE在摊销框架中用未知姿态进行从头算异构重建,从而避免了姿态搜索这一计算成本高昂的步骤,同时能够分析构象异构性。姿势和构象由编码器联合估计,而基于物理的解码器将图像聚合到构象空间的隐式神经表示中。我们表明,我们的方法可以在包含数百万张图像的数据集上提供一个数量级的加速,而不会损失任何准确性。我们验证了姿态和构象的联合估计可以在数据集的大小上摊销。我们首次证明了摊销方法可以从实验数据集中提取可解释的动态信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信