Refined disk potentials for immersed Lagrangian surfaces

IF 1.3 1区 数学 Q1 MATHEMATICS
Georgios Dimitroglou Rizell, T. Ekholm, D. Tonkonog
{"title":"Refined disk potentials for immersed Lagrangian surfaces","authors":"Georgios Dimitroglou Rizell, T. Ekholm, D. Tonkonog","doi":"10.4310/jdg/1664378618","DOIUrl":null,"url":null,"abstract":"We define a refined Gromov-Witten disk potential of self-transverse monotone immersed Lagrangian surfaces in a symplectic 4-manifold as an element in a capped version of the Chekanov--Eliashberg dg-algebra of the singularity links of the double points (a collection of Legendrian Hopf links). We give a surgery formula that expresses the potential after smoothing a double point. \nWe study refined potentials of monotone immersed Lagrangian spheres in the complex projective plane and find monotone spheres that cannot be displaced from complex lines and conics by symplectomorphisms. We also derive general restrictions on sphere potentials using Legendrian lifts to the contact 5-sphere.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1664378618","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

Abstract

We define a refined Gromov-Witten disk potential of self-transverse monotone immersed Lagrangian surfaces in a symplectic 4-manifold as an element in a capped version of the Chekanov--Eliashberg dg-algebra of the singularity links of the double points (a collection of Legendrian Hopf links). We give a surgery formula that expresses the potential after smoothing a double point. We study refined potentials of monotone immersed Lagrangian spheres in the complex projective plane and find monotone spheres that cannot be displaced from complex lines and conics by symplectomorphisms. We also derive general restrictions on sphere potentials using Legendrian lifts to the contact 5-sphere.
浸没拉格朗日曲面的精细圆盘势
我们将辛4-流形中自横向单调浸入拉格朗日曲面的Gromov-Witten圆盘势定义为双点奇异链(Legendarian-Hopf链的集合)的Chekanov-Eliashberg dg代数的一个有帽版本中的一个元素。我们给出了一个运算公式,表达了平滑双点后的潜力。我们研究了复射影平面中单调浸入拉格朗日球的精细势,并找到了不能通过亚同胚从复直线和二次曲线中位移的单调球。我们还使用勒让德提升到接触5球,导出了对球势的一般限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信