{"title":"Assessment of soil erosion hazard and its mapping using GIS technologies","authors":"Hleb S. Lazovik, Antonina A. Topaz","doi":"10.33581/2521-6740-2021-2-18-31","DOIUrl":null,"url":null,"abstract":"The article presents a method for creating a territory erosion hazard integrated map using RUSLE integral model, Earth remote sensing data and GIS technologies. The studies carried out on this topic are presented, the analysis of which has shown a more active use of integral indicators of water-erosion processes in foreign scientific works. Urgency of updating methodology for studying erosion processes has been substantiated. Theoretical foundations of the application of integral models of soil erosion are given, the application of the RUSLE model is substantiated, and the optimal way of using this model is proposed. The research methodology has been developed, consisting of primary processing of remote sensing data, calculation of the factors of erosion development and creation of a territory erosion hazard integrated map. Based on the processing of aerial photography materials, a point cloud, a digital elevation model and an orthomosaic map of the study area were created. The results of the geoinformation analysis of the remote sensing data, which included calculation of the soil erodibility factor and the topographic factor, are presented. Based on the integral indicator of watererosion hazard, a complex map of the erosion hazard of the territory has been created. Main patterns of geographical distribution of the values of the integral indicator of the water-erosion hazard of the territory are revealed, devised methodology is assessed. It was found that the schematic map reflects the general pattern of water erosion processes: they are more active in places where more dissected relief is spread. Influence of the soil factor on the pattern of the schematic map is shown: the pattern in the territories occupied by sod-podzolic loamy soils qualitatively differs from the pattern on the lands where sod-podzolic sandy loam soils are widespread. Patterns on the schematic map of different parts of the developed linear forms of relief, formed by temporary streams, are described. It is shown that the proposed method can be used to assess the water-erosion hazard of the territory. The need to take into account a larger number of factors and to refine the assessment of existing ones is concluded.","PeriodicalId":52778,"journal":{"name":"Zhurnal Belorusskogo gosudarstvennogo universiteta Geografiia geologiia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Belorusskogo gosudarstvennogo universiteta Geografiia geologiia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/2521-6740-2021-2-18-31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The article presents a method for creating a territory erosion hazard integrated map using RUSLE integral model, Earth remote sensing data and GIS technologies. The studies carried out on this topic are presented, the analysis of which has shown a more active use of integral indicators of water-erosion processes in foreign scientific works. Urgency of updating methodology for studying erosion processes has been substantiated. Theoretical foundations of the application of integral models of soil erosion are given, the application of the RUSLE model is substantiated, and the optimal way of using this model is proposed. The research methodology has been developed, consisting of primary processing of remote sensing data, calculation of the factors of erosion development and creation of a territory erosion hazard integrated map. Based on the processing of aerial photography materials, a point cloud, a digital elevation model and an orthomosaic map of the study area were created. The results of the geoinformation analysis of the remote sensing data, which included calculation of the soil erodibility factor and the topographic factor, are presented. Based on the integral indicator of watererosion hazard, a complex map of the erosion hazard of the territory has been created. Main patterns of geographical distribution of the values of the integral indicator of the water-erosion hazard of the territory are revealed, devised methodology is assessed. It was found that the schematic map reflects the general pattern of water erosion processes: they are more active in places where more dissected relief is spread. Influence of the soil factor on the pattern of the schematic map is shown: the pattern in the territories occupied by sod-podzolic loamy soils qualitatively differs from the pattern on the lands where sod-podzolic sandy loam soils are widespread. Patterns on the schematic map of different parts of the developed linear forms of relief, formed by temporary streams, are described. It is shown that the proposed method can be used to assess the water-erosion hazard of the territory. The need to take into account a larger number of factors and to refine the assessment of existing ones is concluded.