{"title":"Peristaltic Transport of Hyperbolic Tangent Fluid in an Asymmetric Channel Through a Porous Medium","authors":"N. Naduvinamani, Anita Siddayya Guttedar","doi":"10.1166/jon.2023.2009","DOIUrl":null,"url":null,"abstract":"The study explores to analyze the problem of peristaltic mechanism of tangent hyperbolic fluid through porous medium in an asymmetric channel. The two-dimensional peristaltic flow of hyperbolic tangent fluid in an asymmetric channel through porous medium is analyzed under the long wavelength\n and low Reynolds number assumptions. The flow is investigated in a wave frame of reference moving with velocity of the wave. The perturbation series is used to obtain the solution for stream function, pressure gradient and pressure rise. The results were studied for different values of the\n physical parameters of the problem and illustrated graphically. It is observed that pressure rise diminishes for the larger values of Darcy number. Pressure gradient decreases for increment in Darcy number. Hyperbolic tangent fluid model anticipates the shear thinning phenomenon very accurately\n and are being used mostly in laboratory experiments and industries.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.2009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The study explores to analyze the problem of peristaltic mechanism of tangent hyperbolic fluid through porous medium in an asymmetric channel. The two-dimensional peristaltic flow of hyperbolic tangent fluid in an asymmetric channel through porous medium is analyzed under the long wavelength
and low Reynolds number assumptions. The flow is investigated in a wave frame of reference moving with velocity of the wave. The perturbation series is used to obtain the solution for stream function, pressure gradient and pressure rise. The results were studied for different values of the
physical parameters of the problem and illustrated graphically. It is observed that pressure rise diminishes for the larger values of Darcy number. Pressure gradient decreases for increment in Darcy number. Hyperbolic tangent fluid model anticipates the shear thinning phenomenon very accurately
and are being used mostly in laboratory experiments and industries.
期刊介绍:
Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.