A Wells type exact sequence for non-degenerate unitary solutions of the Yang–Baxter equation

IF 0.8 4区 数学 Q2 MATHEMATICS
V. Bardakov, Mahender Singh
{"title":"A Wells type exact sequence for non-degenerate unitary solutions of the Yang–Baxter equation","authors":"V. Bardakov, Mahender Singh","doi":"10.4310/hha.2022.v24.n2.a2","DOIUrl":null,"url":null,"abstract":"Cycle sets are known to give non-degenerate unitary solutions of the Yang--Baxter equation and linear cycle sets are enriched versions of these algebraic systems. The paper explores the recently developed cohomology and extension theory for linear cycle sets. We derive a four term exact sequence relating 1-cocycles, second cohomology and certain groups of automorphisms arising from central extensions of linear cycle sets. This is an analogue of a similar exact sequence for group extensions known due to Wells. We also compare the exact sequence for linear cycle sets with that for their underlying abelian groups via the forgetful functor and discuss generalities on dynamical 2-cocycles.","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Homology Homotopy and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2022.v24.n2.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Cycle sets are known to give non-degenerate unitary solutions of the Yang--Baxter equation and linear cycle sets are enriched versions of these algebraic systems. The paper explores the recently developed cohomology and extension theory for linear cycle sets. We derive a four term exact sequence relating 1-cocycles, second cohomology and certain groups of automorphisms arising from central extensions of linear cycle sets. This is an analogue of a similar exact sequence for group extensions known due to Wells. We also compare the exact sequence for linear cycle sets with that for their underlying abelian groups via the forgetful functor and discuss generalities on dynamical 2-cocycles.
Yang-Baxter方程非退化酉解的Wells型精确序列
众所周知,循环集给出了杨-巴克斯特方程的非退化酉解,线性循环集是这些代数系统的丰富版本。本文探讨了最近发展起来的线性循环集的上同调和可拓理论。我们导出了一个关于1-共环、第二上同调和由线性循环集的中心扩张引起的某些自同构群的四项精确序列。这类似于Wells已知的群扩展的类似精确序列。我们还通过遗忘函子比较了线性环集的精确序列和它们的基础交换群的精确序列,并讨论了动力学2-环的一般性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: Homology, Homotopy and Applications is a refereed journal which publishes high-quality papers in the general area of homotopy theory and algebraic topology, as well as applications of the ideas and results in this area. This means applications in the broadest possible sense, i.e. applications to other parts of mathematics such as number theory and algebraic geometry, as well as to areas outside of mathematics, such as computer science, physics, and statistics. Homotopy theory is also intended to be interpreted broadly, including algebraic K-theory, model categories, homotopy theory of varieties, etc. We particularly encourage innovative papers which point the way toward new applications of the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信