Designing of Un-Fused Electron Acceptors with Enhanced Power Conversion Efficiency by Introducing Unique S–O Noncovalent Interaction

IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Muhammad Shahzeb Khan, Hameed ul Haq, S. Ullah, S. E. Z. Syeda, Muhammad Arshad, Bushra Nasrullah
{"title":"Designing of Un-Fused Electron Acceptors with Enhanced Power Conversion Efficiency by Introducing Unique S–O Noncovalent Interaction","authors":"Muhammad Shahzeb Khan, Hameed ul Haq, S. Ullah, S. E. Z. Syeda, Muhammad Arshad, Bushra Nasrullah","doi":"10.1142/s2737416523500035","DOIUrl":null,"url":null,"abstract":"Terminal units’ modification is an effective strategy for designing efficient un-fused nonfullerene acceptors (UF-NFAs) with enhanced power conversion efficiency (PCE). Nowadays, researchers are focused on designing new UF-NFAs that enhance the PCE of organic solar cells. In this line, efforts are being made to design new UF-NFAs for possible application on organic solar cells (OSCs). By doing terminal unit modification of the Cl-4F molecule, we have designed a new series of UF-NFA (ETPJ-1–ETPJ-4). Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) at the B3LYP/6-311G([Formula: see text]) level have been employed for the computation of various geometric and photovoltaic aspects. Energies of highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) with their band gap suggested that ETPJ-1–ETPJ-4 are effective contributors to the design of the efficient active layer of OSCs. Red-shift (near IR) in the absorption spectrum with easy excitation of exciton has been noted in ETPJ-1–ETPJ-4. Enhanced open circuit voltage with high fill factor percentage (FF%) was also noted for designed systems. Further, the PCE values of the ETPJ-1–ETPJ-4 are better than the reference molecule. So, we recommended a novel kind of unfused nonfullerene acceptors (NFAs) with unique S–O noncovalent interaction for possible application in OSCs.","PeriodicalId":15603,"journal":{"name":"Journal of Computational Biophysics and Chemistry","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biophysics and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2737416523500035","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Terminal units’ modification is an effective strategy for designing efficient un-fused nonfullerene acceptors (UF-NFAs) with enhanced power conversion efficiency (PCE). Nowadays, researchers are focused on designing new UF-NFAs that enhance the PCE of organic solar cells. In this line, efforts are being made to design new UF-NFAs for possible application on organic solar cells (OSCs). By doing terminal unit modification of the Cl-4F molecule, we have designed a new series of UF-NFA (ETPJ-1–ETPJ-4). Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) at the B3LYP/6-311G([Formula: see text]) level have been employed for the computation of various geometric and photovoltaic aspects. Energies of highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) with their band gap suggested that ETPJ-1–ETPJ-4 are effective contributors to the design of the efficient active layer of OSCs. Red-shift (near IR) in the absorption spectrum with easy excitation of exciton has been noted in ETPJ-1–ETPJ-4. Enhanced open circuit voltage with high fill factor percentage (FF%) was also noted for designed systems. Further, the PCE values of the ETPJ-1–ETPJ-4 are better than the reference molecule. So, we recommended a novel kind of unfused nonfullerene acceptors (NFAs) with unique S–O noncovalent interaction for possible application in OSCs.
通过引入独特的S-O非共价相互作用来设计具有提高功率转换效率的非融合电子受体
终端单元修饰是设计高效非熔融非富勒烯受体(uf - nfa)的有效策略,可提高功率转换效率(PCE)。目前,研究人员正致力于设计新的uf - nfa,以提高有机太阳能电池的PCE。在这方面,人们正在努力设计新的uf - nfa,以便可能应用于有机太阳能电池(OSCs)。通过对Cl-4F分子进行末端单元修饰,我们设计了一系列新的UF-NFA (ETPJ-1-ETPJ-4)。B3LYP/6-311G([公式:见文])水平的密度泛函理论(DFT)和时变密度泛函理论(TD-DFT)被用于各种几何和光伏方面的计算。最高已占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)的能量及其带隙表明,ETPJ-1-ETPJ-4是OSCs高效活性层设计的有效贡献者。ETPJ-1-ETPJ-4在易激发激子的吸收光谱中出现了近红外红移。设计的系统还注意到具有高填充因子百分比(FF%)的增强开路电压。此外,ETPJ-1-ETPJ-4的PCE值优于参考分子。因此,我们推荐了一种具有独特的S-O非共价相互作用的新型非融合非富勒烯受体(nfa),可能应用于osc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
9.10%
发文量
62
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信