Numerical simulation of wooden structures with polymorphic uncertainty in material properties

Q2 Engineering
F. Leichsenring, C. Jenkel, W. Graf, M. Kaliske
{"title":"Numerical simulation of wooden structures with polymorphic uncertainty in material properties","authors":"F. Leichsenring, C. Jenkel, W. Graf, M. Kaliske","doi":"10.1504/IJRS.2018.10013787","DOIUrl":null,"url":null,"abstract":"Uncertainties are inherently present in structural parameters such as loadings, boundary conditions or resistance of structural materials. Especially material properties and parameters of wood are strongly varying in consequence of growth and environmental conditions. To include this variation in structural analysis, available data needs to be modelled appropriately, e.g. by means of probability and, furthermore, fuzzy probability based random variables or fuzzy sets. In order to comprehend uncertainties induced by estimating the distribution parameters, the stochastic approach has been extended by fuzzy distribution parameters to fuzzy probability based random variables according to studies by Moller et al. To cope with epistemic uncertainties for e.g. geometric parameters of knotholes, fuzzy sets are used. The consequence for wooden structures is determined by fuzzy stochastic analysis in combination with a Finite Element (FE) simulation using a model suitable for characteristics of a timber structure by Jenkel and Kaliske.","PeriodicalId":39031,"journal":{"name":"International Journal of Reliability and Safety","volume":"12 1","pages":"24-45"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliability and Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJRS.2018.10013787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 12

Abstract

Uncertainties are inherently present in structural parameters such as loadings, boundary conditions or resistance of structural materials. Especially material properties and parameters of wood are strongly varying in consequence of growth and environmental conditions. To include this variation in structural analysis, available data needs to be modelled appropriately, e.g. by means of probability and, furthermore, fuzzy probability based random variables or fuzzy sets. In order to comprehend uncertainties induced by estimating the distribution parameters, the stochastic approach has been extended by fuzzy distribution parameters to fuzzy probability based random variables according to studies by Moller et al. To cope with epistemic uncertainties for e.g. geometric parameters of knotholes, fuzzy sets are used. The consequence for wooden structures is determined by fuzzy stochastic analysis in combination with a Finite Element (FE) simulation using a model suitable for characteristics of a timber structure by Jenkel and Kaliske.
具有材料性能多形性不确定性的木结构数值模拟
结构参数固有地存在不确定性,例如结构材料的载荷、边界条件或阻力。特别是木材的材料特性和参数由于生长和环境条件而变化很大。为了在结构分析中包括这种变化,需要对可用数据进行适当的建模,例如通过概率以及基于模糊概率的随机变量或模糊集。为了理解由估计分布参数引起的不确定性,根据Moller等人的研究,通过模糊分布参数将随机方法扩展到基于模糊概率的随机变量。为了处理诸如节点几何参数的认识不确定性,使用了模糊集。木结构的后果是通过模糊随机分析结合有限元(FE)模拟来确定的,该模拟使用了Jenkel和Kaliske的适用于木结构特征的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Reliability and Safety
International Journal of Reliability and Safety Engineering-Safety, Risk, Reliability and Quality
CiteScore
1.00
自引率
0.00%
发文量
1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信