Silicon-correlated Simulation Methodology of EM Side-channel Leakage Analysis

IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Kazuki Monta, Lang Lin, Jimin Wen, Harsh Shrivastav, C. Chow, Hua Chen, J. Geada, Sreeja Chowdhury, Nitin Pundir, N. Chang, M. Nagata
{"title":"Silicon-correlated Simulation Methodology of EM Side-channel Leakage Analysis","authors":"Kazuki Monta, Lang Lin, Jimin Wen, Harsh Shrivastav, C. Chow, Hua Chen, J. Geada, Sreeja Chowdhury, Nitin Pundir, N. Chang, M. Nagata","doi":"10.1145/3568957","DOIUrl":null,"url":null,"abstract":"Cryptography hardware is vulnerable to side-channel (SC) attacks on power supply current flow and electromagnetic (EM) emission. This article proposes simulation-based power and EM side-channel leakage analysis (SCLA) techniques on a cryptographic integrated circuit (IC) chip in system level assembly. SCLA measures SC leakage metrics including T-score, SC leakage score, and the number of measurement traces to disclosure, leveraged by a secure system-on-chip design flow toward SC attack resiliency and SC leakage sign off. Power SCLA features the tracking of security sensitive registers within cryptographic logic paths and the automatic assignments of probe points on associated physical power nets. Power supply current traces are efficiently simulated for the large set of input payloads, with direct vector-based and vector-less random switching controls. EM SCLA evaluates magnetic fields created by every piece of metal wiring in metal stacks where power supply current of cryptographic processing flows. The EM emission and EM SCLA from the backside Si surface of an IC chip in flip-chip packaging are experimentally examined with a 0.13 μm test chip. The proposed simulation-based SCLA exhibits the SC leakage metrics of on-chip location and direction dependency as accurately as in the measurements.","PeriodicalId":50924,"journal":{"name":"ACM Journal on Emerging Technologies in Computing Systems","volume":"19 1","pages":"1 - 23"},"PeriodicalIF":2.1000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Emerging Technologies in Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3568957","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 3

Abstract

Cryptography hardware is vulnerable to side-channel (SC) attacks on power supply current flow and electromagnetic (EM) emission. This article proposes simulation-based power and EM side-channel leakage analysis (SCLA) techniques on a cryptographic integrated circuit (IC) chip in system level assembly. SCLA measures SC leakage metrics including T-score, SC leakage score, and the number of measurement traces to disclosure, leveraged by a secure system-on-chip design flow toward SC attack resiliency and SC leakage sign off. Power SCLA features the tracking of security sensitive registers within cryptographic logic paths and the automatic assignments of probe points on associated physical power nets. Power supply current traces are efficiently simulated for the large set of input payloads, with direct vector-based and vector-less random switching controls. EM SCLA evaluates magnetic fields created by every piece of metal wiring in metal stacks where power supply current of cryptographic processing flows. The EM emission and EM SCLA from the backside Si surface of an IC chip in flip-chip packaging are experimentally examined with a 0.13 μm test chip. The proposed simulation-based SCLA exhibits the SC leakage metrics of on-chip location and direction dependency as accurately as in the measurements.
EM侧沟道泄漏分析的硅相关仿真方法
加密硬件容易受到电源电流和电磁发射的侧信道攻击。本文提出了一种基于仿真的系统级集成电路(IC)芯片的功率和电磁侧信道泄漏分析(SCLA)技术。sca测量SC泄漏指标,包括t分数,SC泄漏分数,以及测量跟踪到披露的数量,通过安全的片上系统设计流程来实现SC攻击弹性和SC泄漏签名。电力sca的特点是在加密逻辑路径内跟踪安全敏感寄存器,并在相关的物理电力网上自动分配探测点。通过直接基于矢量和无矢量的随机开关控制,有效地模拟了大量输入有效负载的电源电流走线。EM scra对加密处理电源电流流过的金属堆中每根金属导线产生的磁场进行评估。采用0.13 μm测试芯片,对倒装芯片中IC芯片背面硅表面的电磁发射和电磁自旋能谱进行了实验研究。所提出的基于仿真的sca显示了芯片上位置和方向依赖的SC泄漏度量,与测量结果一样准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Journal on Emerging Technologies in Computing Systems
ACM Journal on Emerging Technologies in Computing Systems 工程技术-工程:电子与电气
CiteScore
4.80
自引率
4.50%
发文量
86
审稿时长
3 months
期刊介绍: The Journal of Emerging Technologies in Computing Systems invites submissions of original technical papers describing research and development in emerging technologies in computing systems. Major economic and technical challenges are expected to impede the continued scaling of semiconductor devices. This has resulted in the search for alternate mechanical, biological/biochemical, nanoscale electronic, asynchronous and quantum computing and sensor technologies. As the underlying nanotechnologies continue to evolve in the labs of chemists, physicists, and biologists, it has become imperative for computer scientists and engineers to translate the potential of the basic building blocks (analogous to the transistor) emerging from these labs into information systems. Their design will face multiple challenges ranging from the inherent (un)reliability due to the self-assembly nature of the fabrication processes for nanotechnologies, from the complexity due to the sheer volume of nanodevices that will have to be integrated for complex functionality, and from the need to integrate these new nanotechnologies with silicon devices in the same system. The journal provides comprehensive coverage of innovative work in the specification, design analysis, simulation, verification, testing, and evaluation of computing systems constructed out of emerging technologies and advanced semiconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信